
1

ECE 460/560
Embedded Systems Architectures:

Introduction

A.G. Dean
agdean@ncsu.edu

https://sites.google.com/ncsu.edu/agdean/teaching

8/19/2025

2

Embedded Systems Topics (and Dependencies)

3

 Embedded Computer Systems frequently target control applications
 Get input (read signal, detect event), Compute new output value, Update output
 Microcontroller = Microprocessor + memory + hardware peripherals to support

control
 Embedded Systems have processes, different implementation options

 Software can do almost anything (eventually). Timing is slow, very sloppy.
 Hardware is very fast and energy-efficient, uses dedicated circuits. Stable timing.

Limited functionality available.
 Typically have multiple concurrent processes due to application requirements
 These processes often have diverse I/O operations

 Digital signals, analog signals (must be converted to digital)
 Bursts of events (e.g. PWM, serialized data, etc.),
 Sample input periodically vs. receive event notification,
 Range of I/O operation frequencies

Embedded Systems High-Level View (1)

4

 The I/O for a process often has challenging timing requirements
 Periodic events, events synched to other/previous events on this/other signals

 Decouple the I/O from compute software (bad timing characteristics) by
splitting it into two or more processes to make input or output operations
asynchronous to the compute operations.
 We may move some processing to hardware peripheral circuits.

 These processes need to synchronize and communicate (data buffering).
 We use interrupts, HW peripherals and DMA to make a low-cost and

feasible solution with a low-frequency CPU.

Embedded Systems High-Level View (2)

5

High-Level Topic Map

Process
Implementation

Dependences
between Processes

How:
Hardware
Processes

How:
Software
Processes

Scheduler:
Share CPU

Time

Communication

Mutual
Exclusion

Mem-
Mapped
Periph.
Access

Embedded Systems
Design Spaces

DMA
Ctlr

Sync. to What?
Why?

Intrpt
System

Notification/
Flow Ctl./

Handshaking

Data
Buffering

Split Process?
(e.g. Async I/O)

Direct or
Indirect
Comm.?

What & Why?
HW, SW, Both?

Why?
How?

Timing

CPU
per

Process

Application
Characteristics

Requirements
& Constraints

Concurrent
Processes

Ordering/
Triggering

Synchronization:
Do? Don’t?

Polling
(Prog’d

I/O)

Why?
Concepts

How?
Methods

HW Shared Vars
& DIY SW

Support from
OS, Language

Why?
How?

Why?
How?

Why?
How?

Why?
How?

Example
Applications

Periphs,
Prog. Logic,

DMA

How: Both Hardware
and Software

Processes

Development Processes:
Embedded System

Engineering

Functional
Reqts.

Non-Funct.
Reqts.

Design Development
& Debugging

Testing Dependable
Systems

HW Shared Vars
& DIY SW

Support from
OS, Language

6

Yet Another Course Map
How ES are Different

Introduction to Example Applications: I/O, Processing, Timing, Sync and Comm

Timing Behavior
& Analysis

Peripherals

Peripheral
Interconnect

DMA
System

Interrupt
System

Blinky WaveGen Scope DevSys
(Shield &
FRDM)

Level 1: Overviews

Level 3: Detailed Design with HW Peripherals,
Cyclic Exec & Interrupts

Level 2: Foundations. Basic Concepts and Architectures

Cyclic
Exec.

Cyclic Exec.
& Intrpts

Coop. Sched.
& Intrpts

Process
Basics

Complex I/O. Dig,
Ana, Basic Timing

Reqts

HW Processes:
Lim funct, precise
timing, dedicated

Concurrency, Sync and
Comm for SW and HW

Procs

Sync. vs. Async.
I/O

Basic
Behavior
(Control)

Dimensions

Sched. IPC
Support

Digital & Analog
Interfacing, Task
Timing Reqts,

Interf. and Sched.

Stabilizing Output
Timing Synchronizing

Processes (events
and mutex),

Stabilizing Input
Timing, Data

Buffering

TBD

Preemptive Sched.
& Intrpts (RTOS)

Level Y: Re-Implement with Preemp. Sched (RTOS RTX5) Apply RTOS
Services: TBD Apply RTOS

Services: TBD
Apply RTOS

Services: TBD Apply RTOS
Services: TBD

Apply Coop Sched
Services: TBD

Apply Coop Sched
Services: TBD

Apply Coop Sched
Services: TBD

Apply Coop Sched
Services: TBD

SW Processes. Flex
funct, sloppy timing,

share/sched

Digital

Timing Reqts.
in Detail

(See LN L2)
Analog

CPU Sharing: intrpts,
sched. Roadmap:
Preemption++ (4)

Async. I/O

Need &
Concepts

AIO Imps

AIO with
Interrupts

AIO Coop.
Sched. & Intrpts

AIO with
DMA and
Interrupts

HW-HW SW-SWHW-SW

Prog’d
I/O

Shared
Variables

Process Sync & Comm

Level X: Re-Implement with Coop Sched (RTCS)

Development
Processes

DebuggingDesign
before
Coding

Problem-
Solving

7

Extending the Topic Map

Process
Implementation

Dependences
between Processes

Hardware
Processes

Software
Processes

Sched:
Share CPU

Time

Communication

Mutual
Exclusion

Both Hardware and
Software Processes

Mem-
Mapped
Periph.
Access

Embedded Systems
Design Space(s)

DMA
Ctlr

Sync. to What?
Do or Don’t?

How?

Intrpt
System

Notification/
Flow Ctl./

Handshaking

Data Loss &
Duplication

Buffering
Split

Receiver
Process?

Split urgent/
deferrable work

Direct or
Indirect
Comm.?

SW?

Why
use…?

HW?

+ Coop.
Sched. Tasks

Infinite
loop in
main

+ Task
Priorities

+ Task
Preemption

RTCS Run-to-
Completion
Scheduler

RTXv5
RTOS

FSMs for
Responsiveness

How?

“DIY” Code Implementations
Shared

Variables

How?

OS Mechanisms
Event Flag Semaphore

Shared
Variables

Mutex Lock

Concepts How?

In
Order?

Cost of Precise
Timing

Buffering
Concepts

Why?

Message
Queue

How?

Double
Buffer

Circular
Buffer

Req/Ack
Flags

DMA-
managed

buffer

Mailbox

How?

Cost of
Precise Timing

CPU
per

Process

Application
Characteristics

Requirements
& Constraints

Processes and Concurrency
for Embedded Systems

Processes and
Concurrency

Peri-
pherals

Dedic. HW
Interconn.

DMA
Ctlr

Ordering/
Triggering

Concepts

Synchronization

Polling
(Prog’d

I/O)

+Interrupts
: Fore/Back

ground
Serializing

Server

8

ExamplesProblem-SolvingConcepts and Methods
ShieldFRDM

O
sc

ill
os

co
pe

W
av

ef
or

m
 G

en
er

at
or

Bl
in

ky
 L

ig
ht

s

T
hr

ou
gh

pu
t

C
om

pu
te

 E
ffi

ci
en

cy

R
es

po
ns

iv
en

es
s

T
im

in
g

St
ab

ili
ty

C
or

re
ct

 F
un

ct
io

na
lit

y

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

an
d

C
om

m
un

ic
at

io
n

Pr
oc

es
s

Sc
he

du
lin

g

Pr
oc

es
s

Im
pl

em
en

ta
tio

n

D
ev

el
op

m
en

t
Pr

oc
es

se
sApplication

Requirements

μS
D

 v
ia

 S
PI

SM
PS

 C
on

tr
ol

le
r

To
uc

hs
cr

ee
n

LC
D

 C
on

tr
ol

le
r

I2 C
 C

om
m

.

Se
ri

al
 C

om
m

.

T
im

in
g,

ot
he

r
N

on
-F

un
ct

io
na

l

In
pu

ts
, O

ut
pu

ts
,

Fu
nc

tio
na

lit
y

HW->SWSW->HWSWHWSWHWSWHW

Apply to Examples

9

Problem-SolvingConcepts and Methods

T
hr

ou
gh

pu
t

C
om

pu
te

 E
ffi

ci
en

cy

R
es

po
ns

iv
en

es
s

T
im

in
g

St
ab

ili
ty

C
or

re
ct

 F
un

ct
io

na
lit

y

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

an
d

C
om

m
un

ic
at

io
n

Pr
oc

es
s

Sc
he

du
lin

g

Pr
oc

es
s

Im
pl

em
en

ta
tio

n

D
ev

el
op

m
en

t
Pr

oc
es

se
sApplication

Requirements

T
im

in
g,

ot
he

r
N

on
-F

un
ct

io
na

l

In
pu

ts
, O

ut
pu

ts
,

Fu
nc

tio
na

lit
y

HW->SWSW->HWSWHWSWHWSWHW

Overhead,
batch
processing,
SW ->HW

Overhead,
batch
processing,
SW->HW

SW process
Timing
Analysis ,
System
Response
time
analysis,
Prioritizatio
n, blocking,
preemption,
Real-Time

Timing
analysis,
Time
synchronizat
ion, Timer
peripheral,
sched/OS
timer,
preemption
& blocking

Concurrency
bugs, Testing,
Debugging,
Dependable
system
architecture

Sync Input,
Interrupts,
Async Input,
Data buffering

Sync. Output,
Async. Output,
Data buffering

Shared
variables with
algorithms,
OS/Language
support

Peripheral
interconn.,
DMA

Events vs.
polling, While 1
loop, Interrupt
system,
Cooperative
tasks,
Preemptive
Tasks. Priorities,
preemption

Peripheral
interconn.,
DMA

Source
code,
build
toolchain,
object
code

Peripherals,
DMA
controller
Prog. logic,

Defining
requirements,
Design before
coding, Estimation,
Design for X,
Testing, Dev.
Processes for
dependable and
safety-critical
systems

I/O event timing,
internal timing,
power and energy
consumption,
code size

User interface,
Control
Systems, Media
DSP, Data
logging, Sensor
data processing
& fusion, etc. …

Many Interconnected Methods

10

 Review of how ES computers are different from GP, and why
 Topics

 Example applications: functionality
 Timing requirements
 Timing capabilities and behaviors of hardware and software
 Synchronization

Class 02 Overview

11

Computers for Embedded Systems vs. General-Purpose Systems

Range of processing activities needed to handle inputs,
determine control actions, update outputs.

System with concurrent processes requires sync & comm

Synchronous software I/O is bad fit for time-critical I/O requirements. SW timing
obscurity/ambiguity/non-determinism clash with I/O needs (req’ts for timing precision

& stability) and SW<->I/O rate mismatches (especially for burst activities)

Use Async I/O to bridge/tolerate timing mismatches
(between I/O and SW) at low cost

Implementing Async I/O requires deciding where to split
process, how those parts will sync and communicate.

Can implement process functionality, sync and comm in SW, HW or both.
Should select based on strengths and weaknesses of SW, HW for given need.

Implementations & Mechanisms
(outside of CPU ISA)

General HW
Peripherals

DMA

Sharing CPU: Interrupts, Scheduling, Real-Time
System Concepts

Programmable logic with
custom FSM. CLB, FPGA. Pico

Prog. I/O blocks (FSMs)

Sources of software timing obscurity:
inherent behavior of algorithm, arbitrary input event

sequences, program compilation, performance
variation/non-determinism (CPU, memory system),

task scheduling

Disconnect between source code and object code
timing: compilation, ISA features, optimizations

CPU performance variations: data-dependent
instruction timing, superscalar/dynamic

execution, pipelines, predictors, prefetching

Memory system
(caches, VM, interference in multicore, …)

Arbitrary input event sequences possible,
complicating system timing behavior

Interrupts and Scheduling to share CPU core(s).

Inherent behavior of algorithms
(control flow variations)

Efficiently crossing between HW and SW to implement
procs, sync and comm. Interrupts, DMA vs. prog I/O.

Mainstream computing just uses a subset of the
Async I/O design space. Targets gen-purpose

computers with a few I/O devices (user
interface, storage, network) and their use cases.

Interrupts/exceptions for timer tick, OS
interface, faults, I/O events (Rx or Tx complete,
error). DMA discussed if you dig deep enough

into system design.

When you have only a hammer,
everything looks like a nail.
CS education typically omits

digital design (other than CPU,
maybe memory system, AI

accelerators, …).

Sync for initial triggering (event generators/detectors)

Supporting splits: Communication (esp. data buffering
w/timing requirements), more sync to support comm

(notifications, handshaking, overruns …)

General Design Pattern: functionality,
sync, comm (esp. buffering)

Use HW for some or all of func, sync, comm: less SW
needed (if any), easier SW deadlines (fewer, looser). Programmable

Coprocessors:
TI PRU (prog.

real-time unit), …

HW Peripherals for
Sync/Comm Support

Throw in
another core

agdean@ncsu.edu August 18, 2025

Event/Sync
Interconnect for

Peripherals

Must understand some digital design to effectively
recognize and assess HW implementation options

Embedded (Computer) System enhances larger system: e.g. improves
performance, adds safety protections, simplifies maintenance & diagnostics.

Must monitor inputs and control outputs.

Inherently concurrent system. Often is most practical to implement
with multiple concurrent processes (some SW, some HW). Wide range of timing requirements (absolute time, update rate & phase, synchronization

(among signals, with clock, with system substate), response time, timing stability vs. jitter
…) for input signals, output signals, and between them (I->I, I->O, O->O).

Wide range of input and output signals. Digital,
analog, differential, bit-dominance (wired-or), etc.

“How slow can your CPU go and still be on time?” Embedded Systems have concurrent compute processes with diverse I/O operations. Often the I/O for a process has challenging timing
requirements, so we decouple it from compute software (bad timing characteristics) by splitting it into two or more processes to make input or output operations asynchronous to the compute
operations.These processes need to synchronize and communicate (data buffering). We may even move some processing to hardware. We use interrupts, HW peripherals and DMA to make a low-
cost and feasible solution with a low-frequency CPU.

Some I/O operations step through a sequence of I/O sub-operations triggered by
events or time delays, creating new linked timing requirements. UART RX operation,

PWM, synchronous control of motor/SMPS, network with bit dominance, etc.

12

 Software
 Program gives very flexible functionality
 Interrupt system (e.g. NVIC) and scheduler

(if any) determines what software runs on
CPU and when

 Software very vulnerable to timing
interference. Use interrupts, scheduler to
improve timing stability

 Hardware
 Very stable timing (when independent of

software)
 Functionality limited to what is built into

hardware (and your creativity)

Use Software or Hardware? Flexibility vs. Timing Stability

13

 Responsiveness depends on sequence of activities
between input event and system’s response

 Hardware process timing:
fast, very stable, predictable
 Typically faster than time for

CPU to execute an instruction
 Uses hardware circuits which are

dedicated (not shared)
 Exceptions later: shared buses, etc.

 Software process timing: much slower, unstable,
hard to predict precisely
 Time to execute a software process is hard to tell

from source code. Often varies when input data
triggers different behavior (conditionals, loops, etc.)

 Sharing CPU among multiple software processes
delays a process
 Inherent delays and processing overhead (may be in

program, interrupt system, OS/executive) for:
 Synchronization: deciding if process may run (is ready) or must

wait for event/condition
 Scheduling: deciding which ready software process to run next
 Context Switching and/or Dispatching: saving and restoring

process contexts, starting next process running
 Timing interference (preemption, blocking) from other

software processes (threads, interrupt handlers)

System Responsiveness Depends on Processes

VIn

Timing Close-Up
(nanoseconds)

So
ft

w
ar

e
H

ar
dw

ar
e OutIn

Time (microseconds)

CPU
Instruction

CPU
Instruction

CPU
Instruction

VIn
VOut

Event
Response

CPU Sharing Overhead:
Synchronization, Scheduling, Context Switching/Dispatching

Int. Handler

Process 0

Process 1

Process 2

14

DESIGN EXAMPLES: LEVEL 1

15

Processes in ECE 306 Truck

Timing RequirementsOutput
Devices

Output
Peripherals

ProcessingInput
Peripheral

Input
Device

Process

16

Waveform Generator Subsystem: One Process

 Part of a larger system with other processes (e.g. user interface)
 Want to update DAC output every 50 us for a 20 kHz update rate

 DAC signal amplified to drive speaker

W1. WaveGen, base design

AmplifierDig. to Ana.
Conv.

SW
H

W

Compute/Update

Speaker

Timing RequirementsOutput
Devices

Output
Peripherals

ProcessingInput
Peripheral

Input
Device

Process

Every 50 us, +/- 5 us (?)Amplifier &
Speaker

Digital-to-analog
converter

Calculate new output value,
wait fixed time,
write output value to DAC

n/an/aW: Waveform
Generator

17

Scope (Oscilloscope): One Process

Timing RequirementsOutput
Devices

Output
Peripherals

ProcessingInput
Peripheral

Input
Device

Process

18

Blinky Control Panel: Four Concurrent Processes

DIn DOut LED

SW
H

W

Switch

R/C/U
B-A1. On/Off LED

B-B1. Nightlight LED

Analog
Comp. DOut LED

Light
Sensor

SW
H

W

R/C/U

B-C1. Analog-Dimmable LED

Ana. to
Dig. Conv. LEDKnob

(Pot.)
Dig. to Ana.

Conv.

SW
H

W

R/C/U

B-D1. Flashing LED

LEDDout

SW
H

W DInSwitch

R/C/U

Timing
Req’d.

Output
Device

Output
Peripheral

ProcessingInput
Peripheral

Input
Device

Process

Within 100
ms

LEDDigital output portRead port, mask off switch input bit, shift it to LED’s bit
position in output port and write it.

Digital input portSwitchA: Switched
LED

Within 500
ms

LEDDigital output portRead port, mask off comparator’s output bit, shift it to
LED’s bit position in output port.

Analog comparatorPhotosensorB: Night-Light
LED

Within 100
ms

LEDDigital-to-analog
converter (DAC)

Convert analog voltage to digital value, process reading
(negate and scale), convert digital value to analog
voltage

Analog-to-digital
converter (ADC)

Potentiometer
voltage divider

C: Dimmable
LED

Within 100
ms

LEDDigital output portRead port, mask off switch input bit, shift it to LED’s bit
position in output port and write it.

Digital input portSwitchD: Switched
Flashing LED

19

FRDM: Serial Communications Subsystem

Timing RequirementsOutput
Devices

Output
Peripherals

ProcessingInput
Peripheral

Input
Device

Process

20

FRDM: Accelerometer (& I2C) Subsystem

Timing RequirementsOutput
Devices

Output
Peripherals

ProcessingInput
Peripheral

Input
Device

Process

21

Shield: SMPS Controller Subsystem

Timing RequirementsOutput
Devices

Output
Peripherals

ProcessingInput
Peripheral

Input
Device

Process

22

Shield LCD Interface:

Timing RequirementsOutput
Devices

Output
Peripherals

ProcessingInput
Peripheral

Input
Device

Process

23

Shield: Touchscreen Interface

Timing RequirementsOutput
Devices

Output
Peripherals

ProcessingInput
Peripheral

Input
Device

Process

24

Timing Requirements

25

Timing Characteristics of Software

