
Lecture 04 Notes –Synchronization,
Communication, Mutual Exclusion
I. Overview

A. Review
1. Looked at Sync and Do for triggering

processing from events, time
2. Sync for triggering handler process = Detect

event + (schedule handler process +
dispatch handler process) + execute
handler process

3. Basic Sync methods for software process
a. Blocking polling loop
b. Non-blocking polling test within

scheduler loop
c. HW detects event (e.g. edge, serial

event)
d. HW detects event, requests interrupt

service

B. Today
1. Refining Definitions
2. Sync and Do – How to “and”?
3. Sync and Don’t – Mutual Exclusion Intro

II. Refining Definitions
A. Meaning of “Process”
B. Our context (concurrent systems): Process

does something in software or hardware
1. HW Process: one state machine controlling

behavior of data path.
2. SW Process: one stream of instructions

executed sequentially.
a. One thread of execution: single

control flow, one program counter to
specify next instruction. No splitting to
go down multiple paths
simultaneously.

3. SW Processes in C program w/o additional
scheduler support

a. One thread executes main function
which never ends/returns, stopping
only at power-off or sleep

b. Interrupt/Exception handler threads
(ISRs)
i. Are threads which always end.
ii. Rely on interrupt controller to

o Preempt CPU execution of a
lower priority thread (main, lower
priority ISRs)

o Later resume execution of
preempted thread

c. All SW processes able to access all of
memory (instructions, data, peripheral

control registers) unless restricted
(memory protection, privilege level,
memory remapping hardware)

i. Threads can share data through
variables with fixed addresses
(global, static allocation)

C. Other major context (Operating Systems):
1. Not relevant in this class
2. SW Process:

a. One or more threads of execution
operating in one memory space.

b. Threads able to access entire memory
space of their process unless restricted

c. Threads not able to access memory
space of other SW processes.

i. Often implemented by virtual
memory system

III. Sync and Do: How to “and”?
A. What if we can’t fit all the work into the ISR

(or the process)?
1. Why can’t we?

a. Structure Mismatch: Process need to
sync or share data with each other

b. Timing Impact: doing all the work in the
ISR delays other processing too much
i. Vulnerable timing: lower-priority

ISRs, all threads

2. Need to split ISR/process into parts
a. Producer
b. Something to manage incomplete work
c. Consumer

3. What do we need to share?
a. Sync: something happened
b. Communication: data describing what

happened. Typically needs sync to let
consumer know about new data

4. Example: Waveform Generator
a. Goal: generate analog waveform with

precisely timed output updates (e.g.
every 50 us)

b. Implementation W7 – optimized to use
timer, DMA, ISR to stabilize timing

i. Every timer event (50 us apart)
triggers DMA controller to transfer
next sample from array (in memory
array variable) to DAC data register

ii. DMA requests interrupt as it does
last transfer

iii. DMA ISR has loop (calculate next
sample, save to next location in
buffer) to refill entire buffer

c. Timing Challenge with W7

i. ISR takes long time, delays other SW
processing (lower priority ISRs,
threads)

B. Need to get information from ISR (producer)
to main thread (consumer). How?

C. W7 Analysis
1. Insight: Data samples earlier in buffer are

needed sooner (are more urgent) than later
ones

2. Possible solution: Do just the urgent buffer
refill work in the ISR, defer the rest to a
lower-priority thread.

D. Implementation W9 will split work of ISR
1. DMA ISR is producer process. Just refills

first U samples in buffer.
2. Thread is consumer process. Refills

remaining N-U samples in buffer.
a. Somehow DMA ISR needs to tell main

thread to finish refilling the buffer.
Thread must synchronize with ISR.

3. Is one example of inter-process
synchronization and communication.
Many others.

E. How to make version W9
1. Basic Structure

a. ISR: DMA completion
b. Main thread loop: Does work for other

parts of system: reading user interface
controls, updating indicator LEDs, etc.

2. ISR timing is asynchronous to main thread
loop

a. Don’t know if ISR ran, so can’t just refill
buffer every time around the main loop

3. Modify Structure
a. Add a Shared Variable: Event Flag

i. 1 = it happened,
ii. 0 = nothing happened

b. Processes
i. ISR writes 1 to event flag
ii. Main thread: While 1 loop

o Tests each event flag (non-
blocking)

o If flag is 1, clear it to 0 and do
processing

c. Processing Chain Timeline
i. Two processes
ii. SW scheduler uses SW and HW

(Ints)

F. Generalizations: Consider behavior for
abnormal/edge cases
1. OK for consumer to miss events (e.g. in

event burst)?
a. Yes: Count to 1, and no farther
b. No: Use integer variable to count

number of pending events (happened
but not processed)

i. Producer increments
events_pending (ep)

ii. Consumer decrements
events_pending

2. OK to produce events if consumer hasn’t
consumed enough?

a. Buffer size limits, etc.
b. Producer needs to synchronize by

checking events_pending before
producing event

3. Implementation
a. Decide how system should behave, add

to requirements
i. Hardware processes have behaviors

defined for these cases
ii. Very common for more embedded

system requirements for exception
cases than normal operation

b. Implement the behavior
i. Configure hardware (if available)
ii. Bare metal (no SW support):

algorithms in your code
iii. Support from OS/RTOS or

programming language.
Semaphores (counting, binary)

4. Can also communicate data in shared
variables

a. Event Flag + Data Value =
Synchronization + Communication

b. Multiple pending events possible?
i. Also need to save data for each

event (queue, FIFO buffer)
ii. How large to make buffer?

▪ Depends on rates of data
production and
consumption, which
depends on input events,
time to execute processes,
when/how many times
processes get to execute

5. Deeper look at triggering sync behaviors
possible.

a. Can producer process generate
another event if consumer process
hasn’t gotten it yet?
i. No: Lock-step
ii. Yes: How many events are possible

b. Counting? Track number of pending,
unserviced events…

IV. Sync and Don’t: Mutual Exclusion
A. Intro

1. Another form of synchronization
a. Prevent Z from happening at a bad time
b. If A has happened but B hasn’t, then

don’t let Z execute until B has
happened

i. A begins “critical section”
ii. B ends “critical section”

B. Motivating Example 1: Two processes
updating shared variable
1. Processes increment shared global variable

operations:
a. P1 read/modify/write,
b. P2 read/modify/write

2. Failure cases in slide
3. OS Support Side Note

a. OS provides OS-managed objects (e.g.
counting semaphore)

b. These are protected from corruption by
requiring OS calls to access them.

c. The functions for the OS calls contain
critical sections which are protected
correctly.

C. Motivating Example 2: Motor Position/Speed
controller with Zero Limit Switch
1. Processes:

a. P1 QD: increment or decrement
position. Read/Modify/Write

b. P2 ZLS: Zero out position. Write.
2. Failure Cases

a. Receive QD pulses while ZLS is closed?
Add test to see if ZLS is closed(?)

b. ZLS interrupt during QuadDec Inc/Dec
of position variable

i. after read starts (includes during
modify) AND before write starts

D. Solutions
1. Prevent preemption

a. Interrupts
b. Thread scheduling
c. Mutual exclusion

2. Support
a. Hardware
b. Instructions & Algorithms
c. OS/RTOS, Programming Language?

