
Lecture 04 Notes – More Synchronization
I. Overview

A. Review:
1. Looked at Sync and Do for triggering

processing from events, time
2. Sync for triggering handler process = Detect

event + (schedule handler process +
dispatch handler process) + execute
handler process

3. Basic Sync methods for software process
a. Blocking loop, etc.

II. Sync (…) Do
A. How to get information from ISR (producer)

to main thread (consumer)?
1. Why?

a. Timing: doing all the work in the ISR
delays other processing (lower-priority
ISRs, all threads)
i. WaveGen
ii. Scope

b. Other: software structure, etc.
2. Is one example of inter-process

synchronization. What is
communication?

a. Sync: something happened
b. Communication: data describing what

happened, typically needs sync too

3. Starting Example: main loop + ISR
a. Structure

i. Shared Variable: Event Flag

o 1 = it happened, 0 = nothing
happened

ii. Processes
o ISR writes 1 to event flag
o Main thread: While 1 loop

▪ Tests each event flag
▪ If flag is 1, clear it to 0 and do

processing
iii. SW scheduler uses SW and HW

o Event Detection
o Scheduling
o Dispatch
o Handler/Work/Compute

4. Consider behavior for abnormal cases
a. OK for consumer to miss events (e.g. in

event burst)?

i. Yes: Count to 1, and no farther
ii. No: Use integer variable to count

number of pending events
(happened but not processed)

o Producer increments
events_pending (ep)

o Consumer decrements
events_pending

b. OK to produce events if consumer
hasn’t consumed enough?
i. Buffer size limits, etc.
ii. Producer needs to synchronize by

checking events_pending before
producing event

c. Implementation

i. Decide how system should behave,
add to requirements
o Hardware processes have

behaviors defined for these
cases

ii. Implement the behavior
o Configure hardware (if available)
o Bare metal (no SW support):

algorithms in your code
o Support from OS/RTOS or

programming language

5. Can also communicate data in shared
variables

a. Event Flag + Data Value =
Synchronization + Communication

b. Multiple pending events possible?
i. Also need to save data for each

event (queue, FIFO buffer)
ii. How large to make buffer?

▪ Depends on rates of data
production and
consumption, which
depends on input events,
time to execute processes,
when/how many times
processes get to execute

6. Deeper look at triggering sync behaviors
possible.

a. Can producer process generate
another event if consumer process
hasn’t gotten it yet?
i. No: Lock-step
ii. Yes: How many events are possible

b. Counting? Track number of pending,
unserviced events,

III. Sync and Don’t: Mutual Exclusion
A. Motivating Example 1: Two processes

updating shared variable
B. Motivating Example 2: Motor Position/Speed

controller with Zero Limit Switch
1. Processes
2. Failure Cases

a. QD pulses while ZLS is closed – add
test

b. ZLS interrupt during QuadDec Inc/dec
of position variable

C. Support
1. Hardware
2. Instructions & Algorithms
3. OS/RTOS, Programming Language?

