Lecture 03 Notes -I/O, Timing and Synchronization

Overview

- A. Timing requirements for I/O activities are major driver for embedded system design decisions
- B. May need to synchronize to event or time before doing the work (Sync and Do)
 - 1. Scope trigger: detect input rising across threshold voltage, then can start sampling
 - 2. Quadrature decoder: detect input A rising, then sample input B, increment or decrement count

II. Understanding Process Chain for I/O Activities

- A. Synchronize with something
 - 1. Types
 - a. Event-Triggered: Detect event
 - b. Time-Triggered: Await target time
- B. Do processing in response
 - 1. Timing requirements:
 - a. Simple deadline: within TDL of event/time
 - b. Window deadline: Between TDL_Open and T_{DL_Close} of event/time
- C. Repeat?
 - activities, so next will sync (event or time) to next part or do it immediately/ASAP
 - 2. Examples inputs:

1. May have burst or sequence of I/O

a. Quadrature decoder,

b. UART receive data

III. How to Synchronize? A. All Hardware 1. Easy: Dedicated signals B. Some Software 1. HW/SW allocation and processing chain. SW polls hardware (input peripheral) 2. Hard, since software timing is sloppy, gets even harder when sharing CPU a. Timing variation diagram (ramp), sync to stabilize/cut timing variation	SW PA DOUT POUT PORT Avalog V-to Digital to Hualog
3. Start simple: Not sharing CPU a. Detect with blocking SW loop polling (busy-waiting) b. Responsiveness c. Greedy! Sync Proc/Haude	Dy > GP10 DINT SW Ava > 9+ Ana > ADC Rowt
4. Share CPU with software scheduling method a. Round-Robin Loop/Cyclic Exec. i. Detector doesn't block, but take turns with other code (possibly multiple detectors) ii. Responsiveness iii. Not so greedy	Handle Q2 Handle Q2 Handle Q2 Handle Q2
b. Many other sharing options. Prioritization, preemption i. + Schedule, dispatch. C. HW Event Detection 1. Hardware peripheral detects event 2. HW/SW allocation and processing chain. SW polls event detector	- Run it Sync Handle
D. HW Event Detection + Interrupt System 1. HW/SW allocation and processing chain	Ev. Det. Handler Isage

2. Handler runs

			2				
		ning Analysis					
A.	Approach 1. Slack t						
		ow late can process star	t and most				
		adline?	t and meet				
	^	LA	-	-0			
	1	sleck Time	\rightarrow	V			
	2. Respor	nse time					
	a. Wh	hen will this process fini	sh,				
		nsidering effects of othe system	r processes				
		4	1.				
	1		V	1			
		The state of		V			
	F	-	1	preempth	on		
В.		tions from scheduler s			. 7	110	
		ng SW processes sche static fixed schedule	duler	ARC	DAB	- C 13	
		nic scheduling – differen	orders	11 13 0	11	TMCA	AA
	possibl		orders	ABA	CADA	DAC	
•	a. Pri	oritize SW procs		- 3 -			
	i.	Static or dynamic?					
	ii.	Timing-based or other?					
	3. Preemp	otion of SW proc					
		interrupt service routine	s				
	b. By	other SW processes					
				1			
	,		1-				
					.~	/	Λ.
	4. Results	s: timing delays		1 /	Hrio las	k-Inter	temce
		erference by same, high	er-priority	M	-1		
		processes		8	Task	1	Λ Λ
	b. Blo		1	2	1 Di	Tock-Sha	red mesource
		Non-preemptive sched		1/ 11	m LOW-LINE) (W)	L . \
		by lower-priority SW pro sharing resource with th		Plog	Scheoule	es (Not P	need Mesource