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Foreword

Alex Dean and I worked together at United Technologies in the early 1990s helping companies 
such as Otis, Pratt & Whitney, Carrier, and Sikorsky improve their embedded computing prac-
tices. Since then we have both chosen embedded systems as a career path, and have both done 
dozens of design reviews on real industry projects. Sometimes we have been able to team up on an 
especially important product review, which is always a blast. Whenever we chat, he tells me about 
his latest cool project, usually involving gadgets for his sailboat. Alex has seen the real world of 
embedded system design as few other professors have, and has gotten his hands dirty building real 
stuff. This book reflects that experience.

We are in an era in which most technologists seek to specialize, but being a good embedded sys-
tem designer requires breadth across both Computer Science and Computer Engineering. Beyond 
that, many of the tradeoffs for embedded systems are quite different from those for desktop and 
enterprise systems. This book does an admirable job of covering the embedded computing design 
space, balancing the opposing forces of hardware versus software, depth versus breadth, and per-
formance versus constraints. Embedded computing is usually about being highly constrained on 
cost, speed, memory, power, and pretty much everything else. Yet it is also about building systems 
that can be life-​critical, or potentially put a company out of business due to the cost of a product 
recall if the software has a defect. Most of those who have not worked in the area do not realize 
how pervasive this technology is, nor how difficult it is to do well.

To give an example of how much we depend on embedded computers without necessarily real-
izing it, consider a server farm used for Big Data. Everyone knows there are lots of multicore big 
CPUs there. But there are also embedded computers and mission-​critical embedded software in at 
least the following places in that same machine room complex: network interfaces, disk control-
lers, storage box controllers, board-​level power supplies, rack-​level power management, power 
distribution switchgear, backup battery controllers, backup-​diesel engine controllers, temperature 
monitors, air handlers, cooling compressors, cooling expansion valves, humidity controls, lighting 
controls, network switches, a badge swiping system, a security video system, an alarm system, a fire 
suppression system, vending machines to keep the operators happy, status monitors for many of 
those systems, and … well, you get the idea. Without embedded computing, the high-​tech world 
as we know it simply would not exist. And that example is just the starting point. Embedded 
systems are everywhere, and I am continually astonished at the places I find not only microcon-
trollers, but whole teams of engineers designing and maintaining embedded systems. The differ-
ence between an embedded system that works somewhat and one that really works can easily be 
the difference between a product that succeeds or a product that makes the headlines (or worse) 
because it failed. If you doubt whether embedded system design can be a big deal if you get it 
wrong, consider the billions of dollars that have been spent on lawsuits because of badly written 
software or poor choices about what a system did.

The sweet spot for this text is for students who have seen many of the pieces before, but need 
a structured way to put all the pieces together. So that means they already know how to program, 
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how a CPU works in general, and how programs execute. But probably they have seen all this in 
a desktop computing environment in their introduction to computing hardware and to software 
systems courses. This book takes those pieces and puts them together into a coherent whole. It 
also helps students un-​learn some of the habits that are appropriate only for big-​system computing. 
In embedded systems, memory is not “free”, nor can you simply throw more cores at a problem if 
you have a $1 CPU that has to run on a coin battery cell for five years. Getting these systems right 
requires a blend of both science and engineering, with a healthy respect for the realities of the 
marketplace and the messiness of interfacing to the real world.

This book gives a big picture on diverse topics, including:

•	 Computer organization and assembly language. If you do not understand how interrupts work, 
you should not be building embedded systems. (There is more, but that is a good starting point.)

•	 Digital design and how software interacts with bare metal hardware. Modern embedded sys-
tems are all about working with peripheral circuits to maximize system capability at minimum 
total cost.

•	 Analog I/​O. The real world is not digital. (You knew that, right?)
•	 How to program in C. Regardless of what you think about the language, most embedded code 

is in C or a suspiciously C-​like subset of C++, and it is the rare project that is not built on top 
of an existing code base.

•	 Tool chains and support software. Developers have to understand how compilers, real-​time 
operating systems, and other building blocks work to use them effectively. (Hint: Most embed-
ded micros in real products do not run Linux. Or any other OS you are likely to know.)

•	 Time. The computer’s job is to keep up with the real world, not the other way around, and 
doing so creates all sorts of problems that must be understood.

•	 Respect and understanding for what is really going on in both the hardware and the software. 
The best embedded system designers understand how to exploit the strengths of both hardware 
and software.

The book uses the ARM Cortex-​M0+ processor, which has a nice selection of peripherals while 
still giving the feel of a resource-​constrained embedded system. Beyond that, the examples have 
a strong dose of Alex’s experience working in industry, and deal with many of the practical issues 
that arise in real products.

This book takes an integrated approach to putting the pieces together, rather than simply pre-
senting the various pieces in isolation. Each chapter has well-​illustrated working examples based 
on a real MCU evaluation board. These activities start early, with Chapter 2 showing how to read 
switches and light LEDs using GPIO and C code. Concurrency and responsiveness also appear 
early, and weave through the various examples throughout the rest of the book, working up from 
busy polling to preemptive task scheduling. In addition, the examples work through a progression 
of getting things work in a simplistic way and then improving performance by using peripherals 
instead of a brute force software approach. An analog waveform generator provides a running 
example, going from software-​only timing through using DMA data transfers to the DAC.

Finally, this book emphasizes having students understand what is really going on under the 
hood of the compiled C code. While most embedded systems are written in C instead of assembly 
language these days, students need to appreciate what the compiler is doing to make their code too 
big, too slow, or too vulnerable to race conditions. They also need to be able to debug optimized 
compiled code and write the occasional low-​level optimized loop that links to a C program for 
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that 1% of the code where speed is everything. Or even better, understand what is happening well 
enough to trick the compiler into generating an efficient code for them.

If, after reading this book, you are still thinking of using another book, do yourself a favor. 
Check the index of that other book. If the word “watchdog” does not appear, put the book down 
and back away from it slowly. It is not really an embedded computing book if it does not talk about 
watchdog timers, and you would be surprised how common that is. (Yes, Alex does cover watch-
dog timers in this book.) I look forward to the chance to use this book in my teaching.

For those of you who are students, pay attention to what is in this book. You have probably 
already looked at several of the ever-​popular cut-​and-​paste-​the-​code books. They can be expedi-
ent, but you will not really learn what is going on from them, or from the books that just rehash 
the data sheet. Alex’s book is different. It will help you put all the pieces together, so that you 
understand what you are doing, which is the great thing about having the opportunity to study and 
learn at a university, isn’t it?

Professor Phil Koopman, Carnegie Mellon University

Pittsburgh, PA, January 2017
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Preface

Introduction

It is an exciting time to develop embedded systems! Modern microcontrollers (MCUs) offer 
remarkable performance at a very low cost. The Internet provides an abundance of source code and 
documentation. The combination of inexpensive hardware platforms (e.g., Arduino, Raspberry 
Pi, and Beaglebone) with the right software (to abstract away details and guide users) has helped 
lower the barriers to embedded system development, allowing experimentation without requiring 
encyclopedic knowledge.

Unfortunately, these supports become shackles when trying to scale up to a larger, more com-
plex system with tighter constraints. Industrial designers of embedded systems draw from a large 
toolbox of technical methods in order to meet requirements such as speed, responsiveness, cost, 
weight, reliability, or energy use.

Many of the hardware tools are built into the MCU: a central processing unit (CPU) to execute 
software, an efficient interrupt system enabling quick responses to events, fast memory to hold the 
program and data, and specialized hardware peripheral circuits to reduce the need for a high-​speed 
CPU. Hardware peripherals can often signal and control each other, eliminating the need to 
involve software on the CPU. MCUs offer a range of low-​power modes so the designer can trade 
off performance and power consumption as needed.

Other tools are provided by the software, which is typically written in C or C++ and compiled 
to run in the processor’s native machine language. This avoids the run-​time delays and memory 
overhead of interpretation or scripting. Multitasking software is scheduled on the CPU using 
interrupts and a scheduler, which may be cooperative (e.g., state machines) or preemptive (e.g., 
a real-​time kernel).

To summarize, successful embedded system designs use peripherals and well-​structured soft-
ware on the CPU with light-​weight context switching to provide responsive concurrency. This 
textbook aims to explain how to develop microcontroller-​based embedded systems using these 
industry-​standard methods and practice these with the most widely used processor architecture in 
embedded computing today: the ARM Architecture.

Challenges of Embedded Systems Education

There are several interesting challenges to learning (or teaching!) embedded systems in a college 
or university. First, the field builds on concepts from several areas: computer engineering (CPE), 
electrical engineering (EE), and computer science (CS). Some students will be able to study joint 
degrees, or even double or triple major, but most will not. Second, these concepts and their solu-
tions must target embedded system design spaces, which are quite different from the mainstream 
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general-​purpose or high-​performance computing design spaces covered by most courses. Third, 
there are so many areas to cover that it is easy to concentrate on the familiar, which crowds out 
the unfamiliar. Presenting the areas with just enough detail (but not too much) can be difficult.

Challenge 1: �Spanning Electrical and Computer Engineering and 
Computer Science

Successful embedded system designers need a variety of skills from CPE, EE, and CS, but not 
too much, and the right version given the context. These skills are typically split across ECE 
(electrical and computer engineering) and CS departments. To make things worse, CPE and CS 
courses are constantly pulled toward higher performance computers and higher levels of abstrac-
tion (to manage the increased application complexity enabled by the increased performance). 
This widens the gap with the embedded system design space.

The following areas in CPE and EE are the most critical for students in the field of embedded 
systems:

•	 Computer organization and assembly language programming are fundamental to an under-
standing of the CPU, memory, peripherals, and interrupt system.

•	 Digital design is necessary to understand not only how the CPU works, but more import-
antly to understand how peripheral circuits work. These digital circuits (e.g., GPIO, timers, 
DMA) provide cheap concurrency because they operate independently of the CPU. A good 
design will offload computationally expensive software tasks to allow a relatively slow MCU 
to provide precise timing and predictable performance at a low cost and with little power 
consumption.

•	 Basic analog circuit design and analysis skills are needed for adding external circuits such as 
LEDs, switches, and sensors. Knowing how to use an oscilloscope or logic analyzer to examine 
and understand the timing of events within a system is essential for effective debugging.

The following areas in CS are the most critical for students in the field:

•	 C language programming is necessary because it is the dominant language for programming 
embedded systems.

•	 Compilers and assembly language programming provide an understanding of how a CPU really 
does the work specified by the source code. Knowing how the program is compiled and struc-
tured helps with avoiding errors (e.g., preemption), debugging, designing efficient systems, and 
improving performance.

•	 Operating systems’ task scheduler concepts enable students to understand how to share a single 
CPU among the multiple concurrent activities of the embedded system. These topics include 
multitasking, preemption, and prioritization. Students need to understand how to design 
multitasking systems using intertask communication and synchronization to avoid common 
bugs such as data race hazards.
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Challenge 2: Targeting the ES Design Space

For each area mentioned, the practical solutions depend on the design space. The design spaces 
for most embedded systems are quite different from those of general purpose and high-​performance 
computing, because of different drivers and constraints. For example:

•	 Computer Organization: Embedded processors typically do not need the raw speed sought in 
general-​purpose or high-​performance computing systems. As a result, they don’t require high 
clock speeds and the deep processor pipelines and multilayer memory systems to support them.

•	 Operating Systems: OS courses generally target a resource-​rich Linux system that features 
a preemptive scheduler, ample compute and memory resources, a virtual memory system 
with hardware support, and user and supervisor modes. This type of system does not offer 
the precise timing control needed for many embedded systems and is often too complex, 
power-​hungry, and expensive. Students must be able to apply the concepts of task schedul-
ing, synchronization, and communication to a system built on interrupts, peripherals, and 
a simple scheduler (whether a preemptive real-​time kernel or a cooperative scheduler).

•	 Programming: Embedded systems use compiled languages instead of scripted or interpreted lan-
guages for reasons of predictability, efficiency, and compactness. Because of this history there is a 
large installed base of C/​C++ development infrastructure. However, many programming curric-
ula target Java (or even a scripted language). This abstracts away low-​level and implementation 
issues that can make or break an embedded system.

Challenge 3: Providing Sufficient (but Not Excessive) Coverage

With all of these areas to cover, it is easy to emphasize the familiar, crowding out the unfamiliar. 
Furthermore, the hands-​on nature of embedded systems courses often slows down the progress 
as the student or instructor tries to get a code example working to demonstrate an important 
concept.

This book tries to present the areas with just enough detail (but not too much) and with practi-
cal solutions for the design space. This book does not try to present an exhaustive, complete edu-
cation of all possible ways to do something. Instead, it presents the most practical options given 
the constraints.

Notes to the Instructor

Why Use This Book?

In this textbook, I have sought to present the most important topics for embedded systems using 
a coherent, compelling, hands-​on format.

First, the textbook uses a hands-​on approach to get students excited and motivated. Each chap-
ter has illustrated, working examples based on a real MCU evaluation board. These activities start 
early, with Chapter 2 showing how to read switches and light LEDs using GPIO and C code.
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Second, the textbook introduces concepts of concurrency and responsiveness early. Chapter 3 
uses a running example of scanning LEDs according to switch positions to introduce concepts 
important for creating modular, responsive, and efficient systems. By stepping through and 
evaluating these improvements, the student is given a solid foundation on which to investigate 
real-​time kernels (in a later course). Concurrency and responsiveness are introduced using the 
following sequence:

1.	 Starting with a simple program with software to poll switches, flash LEDs, and delay using 
busy-​waiting

2.	 Restructuring the software into tasks
3.	 Scheduling the tasks cooperatively
4.	 Improving the responsiveness of cooperatively scheduled tasks by using state machines to 

break up long operations
5.	 Using interrupts and event-​driven software to replace polling of switches
6.	 Replacing busy-​waiting delay loops by using a timer peripheral
7.	 Prioritizing tasks
8.	 Scheduling tasks preemptively

Third, the textbook covers how to improve performance by using peripheral hardware in place 
of software. An analog waveform generator is used as a running example. It is introduced as an 
application of the digital-​to-​analog converter, with timing fully dependent on software execu-
tion speed. It reappears in the timer chapter, with a timer-​driven periodic ISR updating the 
DAC to improve timing stability. The final appearance is in the DMA chapter, in which 
the DMA controller under timer control automatically copies data from a memory buffer to 
the DAC.

Fourth, the textbook covers C code as implemented in assembly language by the compiler. 
The main goals are to help students understand why their code is slow or large, how to make 
it faster or smaller, to understand preemption risks for shared data, and to help debug pro-
grams by working at both the source and object code levels. This textbook does not expect 
students to program in assembly language, although they may do so in a later course, given this  
foundation.

Course Material Linkage

This textbook is designed to be used for a one-​ or two-​semester course introducing students to 
embedded systems. It complements the Efficient Embedded Systems Design and Programming 
Education Kit from the ARM University Program. If you are an instructor, you can receive a dona-
tion of this Education Kit by emailing university@arm.com. The Education Kit includes lecture 
materials and licenses to ARM’s Keil MDK-​ARM professional software. Students need prerequi-
site knowledge in C programming, digital design, and basic circuit theory.
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Target Platform

This textbook targets the ARM Cortex-​M0+ processor, which executes the instructions of the 
program. The processor is a component within the microcontroller, which adds circuits to clock 
the processor, memory to hold the program and data, and peripheral devices that simplify pro-
grams and improve their performance. This processor is available in microcontrollers from a wide 
range of manufacturers.

The target platform is the FRDM-​KL25Z development board from NXP Semiconductor, with 
a list price of under $20. It uses the NXP KL25Z128VLK4 microcontroller from the Kinetis L 
ultra-​low-​power family. This device features a Cortex-​M0+ processor capable of running at up to 
48 MHz, and contains 128 kB of flash ROM, 16 kB of RAM, and a wide range of peripherals. The 
development board adds a USB debug interface (OpenSDA), power supplies, and input and out-
put devices. A three-​axis accelerometer is used to detect acceleration. Because it also senses the 
force of gravity, it can be used to determine the inclination (tilt) of the board. A touch-​pad slider 
can measure the position of a fingertip using a capacitive sensor. A three-​in-​one output device is 
included: three high-​brightness LEDs (red, green, and blue). These LEDs can be lit with varying 
levels of brightness to produce a full range of colors.

The material in this textbook can be used with other Cortex-​M0+ platforms. Four of the first 
five chapters are essentially independent of the MCU’s peripherals and apply to all Cortex-​M0+ 
processors. The remaining chapters and the Appendix are closely integrated with the peripherals 
by necessity. NXP’s other Kinetis MCUs use many of the same peripherals as the KL25Z, making 
it easier to use those MCUs and their associated FRDM evaluation boards. Targeting an MCU 
family from a different vendor will require porting the peripheral examples.

Software Development Environment

Software examples in this textbook are written in C and compiled to run without an operating 
system. ARM’s Keil MDK-ARM integrated development environment is used throughout the 
textbook. The free version of MDK-​ARM supports all of the code examples in this textbook and 
associated course materials. Note for instructors: If the object code size limitation of the free ver-
sion (currently 32 KB) is a constraint, please request a license donation from ARM for the full 
professional version of MDK-​ARM.

Organization

The textbook is organized as follows:
Chapter  1 introduces students to the concepts of MCU-​based embedded systems, and how 

they differ from general-​purpose computers. It then introduces the ARM Cortex-​M0+ CPU, the 
Kinetis KL25Z MCU, and the FRDM-​KL25Z MCU development board.

Chapter 2 presents the general purpose I/​O peripheral to provide an early, hands-​on experience 
with reading switches and lighting LEDs using C code. It also introduces the CMSIS hardware 
abstraction layer, which simplifies software access to peripherals.
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Chapter 3 introduces multitasking on the CPU, with the goals of improving responsiveness and 
software modularity while reducing CPU overhead. The interplay of interrupts, peripherals, and 
schedulers (both cooperative and preemptive) is examined.

Chapter  4 presents the ARM Cortex-​M0+ processor core, including organization, registers, 
memory, and instruction set. It then discusses interrupts and exceptions, including CPU response 
and hardware configuration. Designing software for a system with interrupts is discussed, including 
program design (and partitioning work), interrupt configuration, writing handlers in C, and shar-
ing data safely given preemption.

Chapter 5 first gives an overview of toolchain, which translates a program from C source code 
to executable object code. It then shows side by side the source code and the object code the tool-
chain has generated to implement it. Topics covered include functions, arguments, return values, 
activation records, exception handlers, control flow constructs for loops and selection, memory 
allocation and use, and accessing data in memory.

Chapter 6 presents analog interfacing, starting with theory and ending with practical imple-
mentations. Quantization and sampling are presented as a foundation for both digital-​to-​analog 
conversion and analog-​to-​digital conversion. The DAC, ADC, and analog comparator peripher-
als are presented and used.

Chapter 7 presents timer peripherals and their use for generating a periodic interrupt or a pulse-​
width modulated signal, or for measuring elapsed time or a signal’s frequency. Watchdog timers, 
used to detect and reset an out-​of-​control program, are also discussed. The SysTick, PIT, TPM, 
and COP timers are examined.

Chapter 8 discusses serial communication, starting with the fundamentals of data serialization, 
framing, error detection, media access control, and addressing. Software queues are introduced to 
show how to buffer data between communication ISRs and other parts of the program. Three pro-
tocols and their supporting peripherals are investigated next: SPI, asynchronous serial (UART), 
and I2C. UART communication is demonstrated using the FRDM-​KL25Z’s debug MCU as a serial 
port bridge over USB to the PC. I2C communication is demonstrated using the FRDM-​KL25Z’s 
built-​in 3-​axis accelerometer with I2C interface.

Chapter 9 introduces the direct memory access peripheral and its ability to transfer data autono-
mously, offloading work from the CPU and offering dramatically improved performance. Examples 
include using DMA for bulk data copying, and for DAC-​based analog waveform generation with 
precise timing.

An Appendix covers how to measure the power and energy use on the FRDM-​KL25Z board, 
including disconnecting the debug MCU to reduce power. Methods to measure energy consump-
tion using an ultracapacitor are highlighted.



xxi

Acknowledgments

I would like to thank the following people for their help:

•	 Khaled Benkrid, Melissa Good, and the reviewers at ARM for supporting this project.
•	 Bill Trosky, Phil Koopman, Alan Finn, and Chris McClurg for opening so many doors to me in 

the embedded systems world.
•	 The development teams who welcomed me in as an outsider to review the embedded software 

for their products. They helped me understand their design goals, technical and non-technical 
constraints, and day-​to-​day challenges.

•	 The students who helped me sharpen my message and identify the fundamental issues at stake. 
Their enthusiasm and creativity are always a powerful, positive force.

•	 My wife and daughters for support, encouragement, and the quiet time needed to complete 
this work.



xxii

Author Biography

Dr. Alexander G. Dean has been a faculty member of the Department of Electrical and Computer 
Engineering at North Carolina State University (NCSU) since 2000. He received his BS (1991) 
from the University of Wisconsin, Madison, and his MS (1994) and PhD (2000) from Carnegie 
Mellon University.

Dr. Dean has developed four courses on embedded systems at NCSU, ranging from fundamen-
tals to architecture and design to optimization. He has created course packages targeting five dif-
ferent MCU families for the university programs of three companies, including the Education Kit 
on Efficient Embedded Systems Design and Programming for ARM Education.

Dr. Dean’s research involves using compiler, operating system, and real-​time system techniques 
to extract more performance from commodity microcontrollers in embedded systems while reduc-
ing clock speed, energy, and memory requirements. His research also includes applying these 
methods for low-​cost control of switch-​mode power converters.

Dr. Dean has worked at United Technologies Research Center developing embedded systems 
and their communication network architectures. He holds three patents in the area. He has per-
formed over 60 in-​depth, on-​site embedded software reviews for industry both domestically and 
internationally since 2001.



1



1



3

Chapter Contents

Overview	 3
Concepts	 4

Why Control a System?	 4
How Good Is the Hot Plate’s Temperature Control?	 5

Why Use Electronics and an Embedded Computer?	 6
How to Embed a Computer?	 7
Examples of Embedded Systems	 8

Looking at the Hardware Inside	 8
Typical Embedded System Software Operations	 12
Embedded System Attributes	 12

Interfacing with Inputs and Outputs	 13
Concurrency	 13
Responsiveness	 14
Reliability and Fault Handling	 15
Diagnostics	 16
Constraints	 16

Target Platform	 17
Overview	 17
Processor	 19
Microcontroller	 20
Development Board	 21

Summary	 22
Exercises	 23
References	 23

Overview

In this chapter we introduce the basic motivations and key concepts for embedding a com-
puter into another system. We examine the design of the hardware and software for the 
embedded systems and also the constraints that designers face. Finally, we examine the target 
hardware platform we will use in this textbook.

Introduction
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Concepts

Why Control a System?

Improving how a system is controlled can provide better performance, extra features, reduced 
purchase or operating costs, and more dependability. An embedded computer system is a com-
puter that has been embedded into a larger system in order to improve it in some way, typically 
by controlling it.

Figure 1.1 shows an electric hot plate that is used to cook food. The control knob on 
the front allows the user to turn on or off the hot plate and to set its temperature. Let’s 
examine the existing control system, determine its weaknesses, and consider how we can  
improve it.

Figure 1.2 shows the internal components of a hot plate:  a black control knob, a heating 
element (covered by a silver metal circle), a red indicator lamp, and a temperature control 
system. The indicator lamp is connected in such a way that it lights when the heating element 
is powered.

The temperature control system, shown in Figure 1.3, is very simple and is based on a single 
component: a temperature-​sensitive (thermostatic) switch. One of the switch contacts is made 
from two different types of metal so that it bends as it grows hotter. When the switch gets hot 
enough, the contact bends so far that the switch disconnects the heating element from the power. 
The heating element and then the switch start to cool down. Eventually the switch will cool 
down enough to bend back and make contact. The control knob adjusts the distance between the 
switch contacts, setting the temperatures at which the switch will open or close. How well does 
this control system work? Let’s find out.

Figure 1.1	 Electric hot plate for cooking food. Photo by 
author.

Figure 1.2	 Internal components of hot plate. 
Photo by author.
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How Good Is the Hot Plate’s Temperature Control?

The temperature of a hot plate cooking surface can be measured using a thermocouple, a type of 
electric thermometer. Figure 1.4 shows the temperature over time. At time t = 0:00, the control 
knob is set to Low to turn on the heating element. The temperature rises to nearly 300°C over 
the next 5 minutes. The heating element turns off briefly at t = 4:00 and then for a longer time 
at t = 5:00. The hot plate then takes the next 10 minutes to cool down to about 150°C at about 
t = 14:40. After this start-​up period, the temperature starts rising in steps as the switch cycles on 
and off with a roughly 2-​minute period, eventually reaching a range centered near 190°C. Notice 
the temperature never actually stabilizes, but rises or falls within a range of about 20°C based on 
whether the switch is open or closed.

Figure 1.3	 A detailed view of the thermostatic switch used to control the heating element. Photo by 
author.
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Figure 1.4	 Hot plate temperatures measured over time.
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Although the control system is simple and low cost, it does not control the temperature of the 
hot plate very well. Consider the following points:

•	The actual temperature swings wildly in the first 15 minutes. Variations in temperature will 
make it harder to cook food consistently. The temperature finally starts to stabilize after 15 or 
20 minutes, which is a long time to wait before starting to cook.

•	The actual temperature of the hot plate cooking surface is not measured. Instead, the 
switch measures a combination of the temperatures of the metal shield and the internal  
air.

•	There is a delay between when the metal shield and the internal air temperatures change 
and when the switch temperature changes, as the heat must be conducted to the switch 
contact.

•	The control system is not calibrated. The control knob is marked with settings off, low, med, 
and high instead of actual numerical temperatures.

Why Use Electronics and an Embedded Computer?

Using electronics can improve the temperature control of this hot plate in many ways:

•	We can reduce the delay between a temperature change and the control system’s response by 
using a smaller sensor that changes temperature quickly.

•	We can mount the smaller temperature sensor on the bottom of the hot plate itself to further 
reduce the delay. This would save time and power by eliminating the large temperature over-
shoot at 5 minutes.

•	We can switch the heating element on and off more frequently, reducing the temperature ripples 
shown starting at 15 minutes in the graph.

•	If we do this switching fast enough, we can control the fraction of time the heating element 
is on, giving us a wide range of heat outputs rather than the simple on/​off of the current 
system.

•	An electronic approach allows us to measure the temperature precisely instead of relying on the 
simple above/​below information that the thermostatic switch provides.

•	Coupling the precise temperature measurement with the proportional heating control, we can 
use a better control scheme. For example, we can turn on the heater a little bit if the tempera-
ture is only slightly below the desired set point, but turn it on more fully if the temperature is 
far below the set point. This will improve response and reduce the temperature overshoot.

•	Adding multiple temperature sensors would allow us to monitor temperatures at multiple loca-
tions on the hot plate, not just one. This will further help control the temperature.

We could design a dedicated electronic control circuit to apply these methods, but it is almost 
always more practical to use an embedded computer because it provides greater flexibility with 
low cost and a quick development time. The exceptions are devices with extreme requirements 
(e.g. processing speed, power consumption, or unit cost).

Embedded computers use specialized integrated circuits (ICs) called microcontrollers that 
have features to simplify the monitoring and control of a system. A microcontroller unit (MCU) 
has a central processing unit (CPU) that runs a program made of instructions.
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An MCU makes it easier to add sophisticated control methods at a low cost per product. We 
customize the computer to our application by writing software for the application and designing 
simple hardware to interface with the system. The recurring hardware costs are low because embed-
ded computers typically use MCUs, which are inexpensive because they are produced in such high 
volumes. MCUs also reduce system costs because they include circuits to interface with the sys-
tem, greatly simplifying the hardware development effort and circuit complexity. The main cost for 
embedded systems is generally the development of the control software, not the hardware itself.

Once there is an MCU in the system, it becomes much easier to add other useful features to 
improve and differentiate the product:

•	Automatically turn off the hot plate for safety after a fixed time with no temperature knob changes.
•	Provide calibrated temperature control with actual temperatures on the knob rather than low, 

med, or hot.
•	Flash the lamp to indicate when the hot plate temperature is at or near the set point.
•	Display the current temperature and the desired (set-​point) temperature on a panel display.

How to Embed a Computer?

Let’s examine how to improve the hot plate by adding an embedded computer. Figure 1.5 shows a 
block diagram of our improved, computer-​controlled hot plate. We will use an MCU as the control-
ler to read the desired and actual temperatures and decide on how to control the output. The MCU 
reads inputs to determine the state of the system being monitored and controlled. For the hot plate, 
the inputs include the temperature control knob position (desired temperature) and the hot plate 
temperature. That temperature is measured with a sensor that provides a signal whose voltage varies 
proportionally with temperature. The MCU may need to convert this signal into a form it can use.

We will use a simple on/​off signal to control the heating element. Because the output signals 
from the microcontroller are low voltage and low current they are not capable of powering the 
heating element. We need to use a driver circuit to step up the signal from the microcontroller to 
an adequate level.

integrated circuit (IC)
Electronic circuit with components built into single piece of silicon, enabling extreme miniaturization, mass production, 
and cost reduction

microcontroller unit (MCU)
Integrated controller hardware circuit containing CPU, peripherals, support circuits, and usually memory

central processing unit (CPU)
Hardware circuit which executes a program’s instructions

instruction
Command which a processor can perform (execute). Consists of an operation and optional parameters called operands.
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The heating element and the indicator lamp operate at a line voltage, such as 110 V or 
220 V. However, the microcontroller operates at a much lower level: 3.3 V. We need to use a power 
supply to convert the input voltage down to 3.3 V. This power supply is not shown in the diagram.

The main job of the software in the controller will be to compute the error between the desired 
temperature (the set point), as indicated by the control knob, and the actual temperature, as 
measured by the temperature sensor. The controller will then adjust the amount of power deliv-
ered to the heating element in order to reduce that error.

Examples of Embedded Systems

Let’s examine two more examples of embedded systems to get an idea of the variety of devices 
and their different design goals and constraints.

Figure 1.6 shows a quadcopter, which is a small, remote-​controlled toy aircraft. The user flies the 
quadcopter using a wireless remote control that sends commands to change altitude; rotate; travel 
forward, back, or sideways; or even flip over 180° and fly upside down. The quadcopter has four 
motors that drive four rotors to provide lift. By adjusting the speed of the motors individually, the 
quadcopter can be made to move in different ways. However, it is too difficult for the user to con-
trol each motor’s speed directly. Instead, the quadcopter’s embedded computer translates the user’s 
remote control commands into motor speed commands. This translation depends on the current 
orientation and motion of the quadcopter, which can change very quickly. The quadcopter has a 
set of accelerometer sensors to detect acceleration in three directions (up/​down, left/​right, forward/​
back) and a set of gyroscopic sensors to detect rotation in three directions (roll, pitch, yaw).

Figure 1.7 shows a refrigerator with a freezer, an ice maker, and a water chiller. Figure 1.8 
shows its control panel and display and part of the chilled water and ice dispenser. The refrig-
erator needs to maintain temperatures within specified ranges in two compartments, allow the 
user to change those temperatures, light the compartments when its door is opened, make ice, 
and dispense chilled water, ice cubes, or crushed ice. Other features include sounding a chime 
if the door is left open for too long and indicating when the water filter needs to be replaced.

Looking at the Hardware Inside

Let’s take a look inside the quadcopter. The printed circuit board (PCB), shown in Figure 1.9 
and Figure 1.10 is about 4.5 cm long. The two large black squares in Figure 1.10 are the MCU 
(above) and the acceleration and rotation sensors (below). The corners of the PCB hold four 
light-​emitting diodes (LEDs) and wires to the four motors. A radio interface chip is hidden 

Heating element

Controller

Temperature
sensor

Control
knob

Driver
Indicator

lamp

Hot plate cooking surface

Figure 1.5	 Block diagram of a computer-​controlled hot plate.
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underneath the white glue and silver cylinder to the right of the MCU and sensors. Most of the 
small black rectangles with three legs are transistors that drive the four motors. The battery cable 
plugs into the large orange connector on the left.

Figure 1.6	 A remote-​controlled quadcopter toy. Photo 
by author.

Figure 1.7	 A refrigerator with a freezer, an ice 
maker, and a dispenser for water and 
ice (not shown). Photo by author.

Figure 1.8	 A user control panel above the chilled water and ice dispenser. Photo by author.

printed circuit board (PCB) 
Board which holds electronic components and uses conductive traces for connections

light-​emitting diode (LED)
Electronic component which emits light. Used for indicators, backlighting, and general illumination
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Now let’s examine the refrigerator’s PCB. Figure 1.11 and Figure 1.12 show the front and back 
of the main PCB, which is about 25 cm long. The MCU is located on the back of the PCB and  
is just one of many electronic components. These other components convert power, amplify 
and condition signals from input devices, and drive output devices. Here are the major input  
and output devices:

Figure 1.10	 The back of a quadcopter controller board. The large black squares are the MCU (top) and 
the accelerometer/​gyroscopic sensor (bottom). The black wire is the radio antenna. Photo 
by author.

Figure 1.9	 The front of a quadcopter controller board. Photo by author.



Chapter 1:  Introduction 11

11

Figure 1.12	 The back of a refrigerator controller board. The microcontroller is the large black diamond. 
Photo by author.

Figure 1.11	 The front of a refrigerator controller board. Photo by author.
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•	Inputs
○○ Switches: user control panel, compressor overload protection, freezer door, refrigerator door, 

ice bucket full, water/​ice dispenser lever, cube motor position, ice maker test, ice route motor 
position.

○○ Temperature sensors: external air, freezer, freezer defroster, refrigerator, refrigerator defroster.
•	Outputs

○○ Lights: freezer, refrigerator, dispenser.
○○ Indicators: user control panel.
○○ Heaters: freezer defroster, refrigerator defroster, water pipe, door cap, dispenser, water tank.
○○ Motors: compressor, ice route, auger, cube, ice grinder, freezer fan, condenser fan, refrigerator fan.
○○ Water valves: water solenoid, icemaker solenoid, water stepper motor.

You probably didn’t expect a refrigerator to be so complex.

Typical Embedded System Software Operations

To do their work, embedded systems typically perform one or more types of operations:
Closed-​loop control involves controlling an output variable based on one or more input 

measurements. For example, the refrigerator controller maintains the temperature by turning on 
the compressor if the refrigerator compartment is too warm and turning it off if it is too cold. 
Similarly, the quadcopter controller keeps the craft flat and stable by adjusting the power to its 
rotor motors based on measurements of acceleration and rotation. There are more sophisticated 
control methods that consider the size of the error (the difference between the desired value and 
the actual measured value), how quickly it is changing, and how long it has persisted.

Sequencing involves controlling an output through a sequence of steps. For example, the ice-
maker follows several steps to make ice:

•	Fill the ice tray with water.
•	Chill the ice tray until the water is frozen.
•	Heat the ice tray to allow the ice to separate from the tray.
•	Eject the ice from the tray.

Signal conditioning and processing may be used to average together multiple sensor readings 
or filter out noise from motors or other devices. For example, the quadcopter’s four motors vibrate 
as they run, introducing noise into the acceleration and rotation readings. Taking multiple read-
ings and averaging them can reduce the impact of this noise, improving accuracy.

Communications and networking allow the device to interact with subsystems or other systems. 
The quadcopter receives packets of control data sent by radio from the controller. The MCU needs 
to decode each packet of data to determine which commands and parameters have been sent.

Embedded System Attributes

Now let’s examine some attributes of embedded systems and the impact they have on the soft-
ware and hardware. These attributes lead to different design approaches and decisions than for 
personal computer application programs.
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Interfacing with Inputs and Outputs

Embedded computers typically need to sense the environment and then control devices in response. 
To do this, specialized circuits are needed to get the information to and from the CPU, which exe-
cutes instructions. We have seen examples of input and output devices for the refrigerator and the 
quadcopter. MCUs consist of a CPU surrounded by specialized peripheral hardware circuits that 
perform much of this interfacing. Any remaining interface circuits are added externally on the PCB.

Many of the external devices use analog signals in which the voltage (or current) can take on 
a continuous range of values to convey information. For example, a temperature sensor might 
indicate its reading by setting its output signal’s voltage to 0.05 V/​°C. A reading of 0.5 V would 
indicate a temperature of 10°C. This analog signal must be converted to a digital value for the 
program to process it; this is done using an analog-​to-​digital converter (ADC). To generate 
sounds accurately, the MCU must generate analog voltage signals to drive headphones or speak-
ers. The digital values representing the sound signal can be converted to an analog voltage using 
a digital-​to-​analog converter.

Often signals must be processed before they are converted to the digital domain for the CPU. 
For example, weak signals need to be amplified, high-​voltage signals need to be scaled down to 
safe levels, and noise must be filtered out. Similarly, the MCU may not be capable of driving 
power-​hungry output devices (e.g. motors and solenoids), so amplification is needed. Consider 
again the refrigerator controller’s main PCB, as shown in Figures 1.11 and 1.12. The MCU is not 
powerful enough to drive the heaters, motors, and valves directly, and so it uses various devices 
(e.g. the black blocks and the white block along the top of the PCB) to do the job. This also 
protects the circuit by isolating low-​voltage components like the MCU (which operates at 3.3 V) 
from the mains voltage (e.g. 120 V or 220 V).

Concurrency

Embedded controllers must typically manage multiple activities concurrently, often with precise 
control of the timing:

peripheral
Hardware circuit which helps CPU by interfacing or providing special functionality

analog
Capable of taking on an infinite number of values

digital
Capable of taking on a limited number of values

analog-to-digital converter (ADC)
Circuit which converts an analog value (e.g. voltage) to its corresponding digital value

digital-to-analog converter (DAC)
Circuit which converts a digital value to its corresponding analog value (e.g. voltage)
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•	For example, the quadcopter MCU must accept user commands by radio while also monitor-
ing rotation (about three axes) and acceleration (in three axes), controlling the speeds of four 
motors to maintain stable flight, flashing indicator lights, and monitoring battery voltage.

•	The refrigerator must control the temperature in the refrigerator compartment, the tempera-
ture in the freezer compartment, manage the ice-​making process, display information on the 
front panel, accept user commands, and perform diagnostics.

Adding more features to a system increases the software’s complexity. A graphical liquid crystal 
display (LCD) may require several software components to (1)  manage the user interface’s 
windows, menus, and screens, (2)  translate text, graphics, and images into pixel values, and 
(3) update the display’s memory with these pixel values. Other examples of such features are WiFi 
and Bluetooth communication and removable storage devices such as Secure Digital flash cards 
and USB drives. The maker of a complex peripheral IC may provide a software module (driver) 
to make interfacing easier. Embedded system developers frequently use third-​party software com-
ponents for such tasks to simplify the development process.

Microcontroller units provide concurrency by sharing the CPU among different parts of the 
software (including interrupt handlers, tasks, threads, and processes), and also by performing 
some processing in hardware peripherals that run independently of the CPU.

The scheduler determines what piece of software to run next on the processor and switches 
execution contexts as needed to make it happen correctly. There is a wide range of schedulers 
available. The most basic schedulers are simple to use and impose little overhead on the proces-
sor. They work best for simple systems and only provide limited help to the developer. More 
advanced schedulers provide better responsiveness (described next) and more features to help 
in program development. Real-​time operating systems (e.g. RTX from Keil) typically use such 
schedulers. However, they require more of the processor’s time and memory, ruling out the use of 
some low-​performance MCUs. In addition, the presence of additional features introduces some 
performance variability. A full-​fledged operating system (e.g. Linux) provides a wide range of 
features and services to help the embedded system developer. Such an operating system (OS) 
requires even more processor time and memory, so a much more powerful MCU is required.

Responsiveness

One challenge for embedded system developers is providing enough responsiveness while sharing 
the CPU’s time across many activities. The field of real-​time systems studies this aspect of design 
and performance.

If an embedded controller does not respond to commands and changes in the environment 
quickly enough, the system may damage itself, people, or other equipment. Often, embedded sys-
tems have requirements that specify deadlines for a response to a given input command. Consider 
the quadcopter: if there is a one-​second delay between your changing the flight controls and the 
quadcopter acting on that command, the aircraft will be much harder to control.

There are two aspects to making a system responsive:  raw processing speed and task 
scheduling.

First, the processor must be fast enough to complete the critical processing before its dead-
line. There are different ways to approach this. One is to make the code efficient so it can do the 
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necessary work with very few instructions. Making the code efficient is called optimization and is 
a common task in embedded system development. Another approach is to use a fast processor so 
that those instructions are executed very quickly. And of course, both can be used.

There are trade-​offs involved here: it takes developers more time to optimize code, increasing 
the development costs but not the recurring per-​unit costs. Using a faster processor (usually) does 
not increase the development costs, but it does increase the recurring per-​unit costs. A  faster 
processor is more expensive, and it may also require more careful circuit design methods. Once 
the processor speed exceeds 50 MHz, the flash memory will not be able to keep up, forcing CPU 
designers to modify the memory system to hide this delay.

Second, the processor needs to stay focused on the critical processing rather than being dis-
tracted by other processing, which will introduce delays. If possible, the critical processing should 
be performed by hardware peripherals to prevent any software interference. Otherwise, some 
kind of software scheduling approach is needed. Simple scheduling approaches provide moderate 
responsiveness, but to get the best responsiveness, a system needs to use interrupts and a preemp-
tive scheduler (e.g. a real-​time kernel or a real-​time OS). Stepping up to an OS (e.g. Linux) 
reduces the system’s responsiveness because now there are many activities that could delay the 
critical processing. Scheduling methods are discussed in Chapter 3.

Some embedded systems have such high processing demands that they use multicore proces-
sors, which are able to execute instructions from multiple programs (or parts of the same pro-
gram) simultaneously. Other such systems may use multiple single-​core processors to get higher 
performance.

Finally, some embedded systems use multiple processors to simplify design, rather than to get 
raw processing speed. Separating the processing reduces timing interference among the software 
components. Many commercial off-​the-​shelf modules (e.g. a WiFi interface) contain an inte-
grated MCU to do the work.

Reliability and Fault Handling

Embedded systems are expected to work correctly and reliably. Unlike personal computers, the 
user does not expect to have to reboot an embedded computer. If something fails, the system 
should minimize the impact of that failure rather than cause further problems.

Providing reliability and appropriate fault handling are very much dependent on the specific 
application. Which components are most likely to fail? There may be methods to detect actual or 
impending failures and shut down the system before there is more trouble. For example, sensors 
can be added (e.g. a thermal sensor to detect an overheating motor, a current sensor to detect 
short-​circuited output), the circuit can be designed in a way to make failures easy to detect in 
software, or the software may be able to analyze historical data to determine failures. Embedded 
systems software typically contains large amounts of fault-​handling code to deal with these excep-
tional cases.

The quadcopter does not need a long-​term, highly reliable operation because it is a toy 
and the expected lifetime is short (perhaps 6 months). The mechanical components of the 
quadcopter will likely fail before software faults occur. However, note the white glue in 
Figure  1.10 which keeps larger, loose objects from vibrating and weakening their connec-
tions to the PCB.
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Diagnostics

For some systems, it is very important to be able to find and repair faulty components quickly and 
easily. One good example is the refrigerator: the manufacturer wants to minimize costs and time 
for its service personnel. The embedded computer system can help by providing diagnostic sup-
port to test the system and identify which components have failed.

The left half of the label shown in Figure 1.13 is dedicated to explaining the refrigerator’s self-​
diagnosis capabilities. This allows the manufacturer’s service personnel to spend less time iden-
tifying the problem, reducing service call costs. The PCB in Figure 1.11 is designed to simplify 
diagnosis and repair; most connections are labeled and a legend labeled “SENSOR Check-​Point” 
explains where to measure the eight different temperature sensors.

Constraints

Constraints placed on the resulting embedded system design limit the designer’s options when 
trying to meet the system’s functional requirements. The embedded system must not be too 
expensive, large, heavy, power-​hungry, and so forth.

Figure 1.13	 The label on the back of a refrigerator provides diagnostic and connection information for 
service personnel. Photo by author.
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Parts costs are important for many embedded systems. The quadcopter and its controller sell 
for about $30, so the cost for parts (electronic, mechanical, etc.) needs to be under about $8. 
There is great pressure to use the least expensive parts that are adequate for the job. In this case, 
the MCU used is an STM32F031K6, which contains a Cortex-​M0 CPU running up to 48 MHz, 
with 4 KB of SRAM and 32 KB of flash ROM. Most embedded systems are programmed in the  
C or C++ languages, in large part because these languages can be compiled into code with precise 
control of the hardware, and yet use small amounts of memory. Similarly, most embedded systems 
do not use a complex OS such as Linux to share the computer’s resources among the parts of the 
program. The main reasons are that the Linux OS requires large amounts of memory and a fast 
processor for good performance. There are alternative methods that can use a much less expen-
sive embedded computer and still meet the performance requirements.

Some embedded systems have constraints on power. Power constraints limit the system’s rate 
of energy use. For example, the amount of power that a photovoltaic (PV) cell can generate 
depends on the ambient light. If the circuit tries to use more power than the PV cell can provide, 
the cell’s voltage drops and the system stops working.

Energy constraints limit the total amount of energy that can be used. For example, a battery 
holds a limited amount of energy. That energy can be used quickly or slowly, but there is only 
a limited amount available. Flying the quadcopter faster will discharge its battery faster, reduc-
ing the maximum flight time possible. So one goal for its developers was to use energy-​efficient 
motors, lights, radios, and MCUs.

Some applications are weight-​sensitive. Heavier objects take more energy to lift, move, and 
stop. For the quadcopter, lightness is important because a heavier quadcopter uses energy faster. 
In order to lift a heavier quadcopter, more lift is needed, so the motors will need to spin faster, 
drawing more power, and discharging the battery sooner. The quadcopter uses very small compo-
nents in order to reduce the weight.

The quadcopter also has size constraints. Notice how small the components on the PCB are 
and how closely packed together they are. Compare this with the much larger and more sparsely 
packed PCB for the refrigerator. The refrigerator’s MCU is about 35 mm × 35 mm and takes about 
1,225 mm2 of the PCB area. This is far larger than the quadcopter’s MCU, which at 10 mm ×  
10 mm takes only 100 mm2.

Embedded systems are often expected to operate reliably over a wide range of temperatures. 
Electronic components for consumer applications are expected to operate with ambient tempera-
tures of 0°C to 70°C. Components for the more demanding industrial and automotive applica-
tions are expected to handle ranges from –​40°C to 85°C.

Target Platform

Overview

Now let’s take a look at the hardware platform that we will be using. We will start with the CPU 
and work our way out.

This textbook targets the ARM Cortex-​M0+ processor shown on the left side of Figure 1.14. 
The processor executes the instructions of the program.
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Figure 1.15	 FRDM-​KL25Z development board from NXP Semiconductors N.V. Photo by author.

The processor is a component within the microcontroller, shown in the center of Figure 1.14. 
The MCU adds circuits to clock the processor, a memory to hold the program and data, and periph-
eral devices that simplify programs and improve their performance. The NXP KL25Z128VLK4 
MCU is used here.

The microcontroller is mounted on a FRDM-​KL25Z development board, shown on the right 
side of Figure 1.14 and Figure 1.15. This PCB adds a debug interface, power supplies, and various 
input and output devices.

Processor

The Cortex-​M0+ processor, shown in Figure 1.16, executes the instructions that make up the 
program. At the center of the Cortex-​M0+ processor is the processor core, which communicates 
with the memory to get the instructions it executes and hold the data it processes. The memory is 
located outside the processor in the microcontroller and is connected via the AHB-​Lite interface. 
The bus matrix shares the memory bus among multiple possible readers and writers. An optional 
memory protection unit enables the system to restrict a task to using only a limited region of the 
memory, limiting the effects of bugs.

Interrupts come to the processor core through the Nested Vectored Interrupt Controller 
(NVIC), which prioritizes and filters them as needed.

The optional Wakeup Interrupt Controller cuts power consumption by letting the NVIC and 
the rest of the processor go to a low-​power sleep mode and waking them up if an interrupt is 
requested. Several modules provide debug support, including downloading code to the MCU’s 
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memory, setting break points to control program execution, and tracing the sequence of instruc-
tions actually executed.

Microcontroller

The microcontroller augments the ARM Cortex-​M0+ processor by adding memory and support-
ing circuitry and peripheral devices (Figure 1.17). There are typically two types of memory pro-
vided. The flash memory retains its contents even without power, so it holds the program and 
fixed data. The SRAM does not retain its contents if there is no power and is used for temporary 
data storage.

The MCU used here (KL25Z128VLK4) features a Cortex-​M0+ processor capable of running 
up to 48 MHz and contains 128 KB of flash ROM, 16 KB of RAM, and a wide range of peripherals 
[1], [2].

The support circuitry is required to make the processor operate. For example, the processor 
requires a clock signal, and the MCU adds multiple clock generators. These clocks have different 
levels of accuracy, speed, power consumption, and configurability.

Peripheral devices off-​load work from the program (which executes on the processor) and 
perform it in hardware. For example, timer peripherals allow precise time measurement of 
events or input signals. They also enable generation of repetitive signals without software 
overhead. Communication interfaces translate digital data between the processor’s format 
and the formats which external devices use. Analog interfaces translate data between the 
processor’s digital format and the analog domain, in which signals vary across a continuous 

Cortex-M0+ Components

Cortex-M0+ Processor

Interrupts Nested
Vectored
Interrupt

Controller
(NVIC)

Cortex-M0+
processor

core

Optional Debug

Breakpoint &
Watchpoint

Units

Debugger
interface

Bus matrix

Optional
Debug
Access
Port

AHB-Lite interface
to system

Optional
Single-cycle

I/O port

Optional
Serial-Wire or JTAG

debug port

Optional
Micro Trace

Buffer
(MTB)

Optional
Memory

Protection
Unit (MPU)

Optional
Wakeup
Interrupt

Controller
(WIC)

Figure 1.16	 ARM Cortex-​M0+ processor and its associated components. Courtesy of ARM Ltd.
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ARM® Cortex®-M0+ Core

Processor

Interrupt Controller

Debug Interfaces

High-Speed System Bus

Bridge

Peripheral Bus

Figure 1.17	 NXP Kinetis KL25Z family microcontroller (MCU). 

range of voltages, rather than the binary 1/​0 of digital electronics. Finally, other peripher-
als are used to reset an out-​of-​control program (watchdog), accelerate and automate memory 
transfers (DMA), and perform other tasks.

Development Board

As shown in Figures  1.15 and 1.18, the microcontroller is mounted on an FRDM-​KL25Z 
development board [3]. This board adds power supplies, a debug interface, and various input 
and output devices. An 8-​MHz clock source provides a stable, accurate timing reference.

The board is normally powered by the 5 V supplied by the USB connection. A voltage regu-
lator drops this to 3.3 V in order to operate the board’s components. There is space to mount 
a small 3 V coin cell and holder, allowing the board to operate without a connection to USB 
power.

A separate debug microcontroller (in the green box labeled OpenSDA) translates commands 
and data between the development PC (via a USB connection) and the KL25Z MCU (the target 
microcontroller).

Two input devices are provided. A three-​axis inertial sensor (accelerometer) is used to detect 
motion. Because it also senses the force of gravity, it can be used to determine the inclination 
(tilt) of the board. A touch-​pad slider measures the position of a fingertip using a capacitive 
sensor.
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A three-​in-​one output device is included: three high-​brightness LEDs (red, green, and blue). 
These LEDs can be lit with varying levels of brightness to produce a full range of colors.

Summary

Embedding a computer to control a system can provide benefits such as better performance and 
sophisticated features. We have seen three examples of applications: a hot plate for cooking food, 
a toy quadcopter aircraft, and a refrigerator. The embedded computer is typically made from a 
microcontroller that runs specialized control software which monitors the critical aspects of the 
system and its environment and then adjusts its outputs so the system behaves as needed. The 
computer uses special hardware to interface with the inputs and outputs. To meet application 
requirements, embedded systems must provide sufficient concurrency, responsiveness, reliabil-
ity, fault handling, and diagnostic help while meeting constraints on cost, size, weight, power, 
energy, and temperature. Finally, we have seen the target platform for this textbook: the ARM 
Cortex-​M0+ processor core within the KL25Z128VKL4 MCU on the NXP FRDM-​KL25Z 
development board.
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Figure 1.18	 NXP FRDM-​KL25Z development board. Courtesy of NXP Semiconductors N.V.
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Exercises

1.	 You have been asked to add an “automatic power-​off” controller to a flashlight. The flashlight 
should turn off automatically after 3 minutes if it is not being used any more. The controller 
must be small, inexpensive, and use little power.
a.	 Can you think of a way to do this with electronics but without an embedded computer?
b.	 Can you think of a way to do this with a mechanical approach?
c.	 Now, really thinking outside the box, can you think of a way to do this with a pneumatic 

approach (using air)?
2.	 Consider embedding a computer in a flashlight. List three benefits or new useful features that 

are now possible. How much more would you be willing to pay for each feature?
3.	 A modern automobile has dozens of embedded computers. However, the auto industry is 

extremely cost-​sensitive, so there must be a compelling reason to add computers. Give five 
examples of features enabled by embedded computers, and explain what major benefit(s) they 
provide.

4.	 Look around and find five devices that are likely to have embedded computer control systems. 
Answer these questions for each device:
a.	 What does the device do?
b.	 What are the device’s inputs?
c.	 What are the device’s outputs?
d.	 How does the embedded computer improve the device? Does it provide more features? 

Does it improve performance?
e.	 What are the biggest constraints on the device (size, cost, power, etc.)?
f.	 Would it be possible to build the device using a different kind of controller (e.g. mechani-

cal)? How would that affect the device’s features, performance, cost, size, and weight?
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Overview

Embedded computers typically need to sense their environment and then control devices in 
response. Let’s start with the basics by learning how to make an embedded computer flash lights 
and read a switch by using a general purpose input/output (GPIO) port.

A microcontroller unit (MCU) contains a central processing unit (CPU) that executes instruc-
tions. The CPU is surrounded by specialized hardware circuits called peripherals that interface 
with external devices or perform other functions for the MCU. Some of these peripherals are 
integrated into the MCU, whereas others may be added externally on the printed circuit board.

In this chapter we introduce the GPIO port. We show how to create a C program to communi-
cate with basic devices such as switches and light-emitting diodes (LEDs) as shown in Figure 2.1. 
An input GPIO port bit lets us read a single bit digital value on an MCU pin. If we connect the 
pin to a switch (as with the signal SWITCH_IN), then the program can tell if the switch is open 
or closed. An output GPIO port bit enables the program to set an MCU pin to one of two volt-
age levels (e.g. either 3.3 V or 0 V). A program can light or extinguish an LED that is connected 
to this output pin (e.g. LED1_OUT or LED2_OUT).

general purpose input/output (GPIO) port
Peripheral with digital input and output bits

input GPIO port bit
Portion of GPIO port which enables program to read a single-bit input signal

output GPIO port bit
Portion of GPIO port which enables program to write a single-bit output signal

R3
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+3V3

LED2_OUT

LED1_OUT
R1

300

LED1
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LED2
Blue

DGND DGND
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75SWITCH_IN

SPST
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P
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Figure 2.1	 A basic digital input and output circuit.
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Throughout this chapter we will follow an example of how to interface a C program with the 
circuit shown in Figure 2.1, which consists of one input (a switch) and two outputs (LEDs).

Some of the implementation details in this chapter are specific to the Kinetis series of MCUs. 
For further details, consult the reference manual [1] or data sheet [2].

Outside the MCU: Ones and Zeros, Voltages, and Currents

We will start outside the MCU and work our way in. An MCU is a digital computer, so it oper-
ates on ones and zeros. How do we present a one or a zero to an input? What does a one or zero 
look like on an MCU output?

These values are represented by voltages within specific ranges relative to the MCU’s power sup-
ply voltage, VDD. The actual voltages do not matter much to an embedded system developer when 
they are inside the MCU, but they do matter when we want to interface with external devices.

Input Signals

Digital inputs are interpreted based on their voltage levels. How do we supply a one or a zero to a 
digital input? The supply voltage VDD sets the thresholds for determining whether an input voltage 
will be considered a one or a zero. For example, the MCU’s data sheet might specify that an input 
voltage between 0 V and 0.35 × VDD will be interpreted as a logic zero, whereas an input voltage 
between 0.7 × VDD and VDD will be interpreted as a logic one. Figure 2.2 shows how input voltages are 
interpreted based on the supply voltage VDD. For example, if VDD is 3.3 V, then input values between 
0 and 1.155 V will be a logic zero and those between 2.31 and 3.3 V will be a logic one. An input 
voltage between 0.35 × VDD and 0.7 × VDD is undefined, and may be read as a one or a zero. This is 
useless so we design external circuits to keep the voltage out of that range except when switching.
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Figure 2.2	 Valid input voltage ranges as a function of supply voltage VDD.
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Digital inputs do not draw much current from the signal source; they have high input 
impedance. Typically each GPIO pin will draw no more than 1 μA over the MCU’s entire oper-
ating temperature range. At room temperature (25°C), the input current will be much smaller  
(e.g. no more than 25 nA).

Output Signals

Output voltages for digital ports are typically specified as being within a certain voltage range 
from a supply rail. For common MCUs, a normal output generating a logic one will produce a 
voltage of VOH (out high), which is between VDD and VDD – 0.5 V. A logic zero will produce a voltage 
of VOL (out low) between 0 and 0.5 V.

This specification only holds true if a limited amount of current is drawn from the output. As 
that current increases, the output circuit’s voltage drop increases, pulling the output voltage away 
from the supply rails (VDD and ground). If the output circuit draws enough current, it will over-
load and destroy the output transistor. So be careful not to exceed the specified ratings.

For many MCUs, the output current IOH or IOL must not exceed 5 mA. Some MCUs include output 
drivers with more powerful transistors, allowing greater output currents. “High drive” pads may be able 
to source or sink up more current (e.g. up to 18 mA) and still meet the output voltage specifications.

The drive current capability also depends on the supply voltage VDD. As VDD falls, the transis-
tors have a higher output resistance, increasing the voltage drop. So at lower operating voltages, 
the maximum output current available falls. Lowering VDD from 3.3 to 2.0 V might cut IOH and 
IOL from 5 to 1.5 mA.

Interfacing with a Switch and LED Lights

Let’s consider the switch and LED example shown in Figure 2.3. A switch and a pull-up resistor 
are connected to signal SWITCH_IN. When the switch is pressed, the signal is pulled low (logic 

R3
100K

+3V3

LED2_OUT

LED1_OUT
R1

300

LED1
Red

LED2
Blue

DGND DGND

R2
75SWITCH_IN

SPST

S1

DGND

P
T

Figure 2.3	 A switch and two LEDs.

transistor
Basic electronic component which operates as switch or amplifier
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zero); otherwise it is high (logic one). The input port’s current draw IIn is so small that we can use 
a high value pull-up resistor (e.g. 100 kΩ) to minimize current consumption when the switch is 
pressed.

Each LED has its anode (positive end, base of triangle) connected to an MCU output signal 
(either LED1_OUT or LED2_OUT) through a resistor. The LED’s cathode (negative end, 
bar) is connected to ground. An LED’s brightness is roughly proportional to the current flow-
ing through it. This current is nearly zero for low voltages, and then rises quickly as the volt-
age exceeds a threshold. The exact relationship between the voltage and current depends on 
the type of LED and its temperature. Applying 1.6 V may not light a red LED at all, but 2.0 
V will make it bright (with 20 mA of current). Raising the voltage slightly to 2.3 V brightens 
it more and makes the current shoot up to 43 mA. Raising it further will cause the LED to 
overheat and fail.

The GPIO port outputs are digital and do not offer such fine-grain voltage control. They 
can provide two levels: and almost ground, and almost VDD (e.g. 3.3 V). The first will cor-
rectly keep the LED off, but the second will probably burn out the LED. We need to include  
resistors R2 and R3 to limit the current through the LED and MCU driver output to a safe 
value.

We can calculate the value R of a current-limiting resistor based on the supply voltage VDD, the 
LED forward voltage VF, and the desired LED current ILED:

	
R

V V
I

=
−DD F

LED 	

We start by picking a value of ILED which is safe for both the LED and the MCU output. In this 
case let’s set ILED = 4 mA, and assume VDD = 3.0 V. VF is 1.8 V for the red LED and 2.7 V for the 
blue LED. We can now solve for the resistor values. For the red LED, a 300 Ω resistor is needed. 
For the blue LED, a 75 Ω resistor is needed.

Inside the MCU

Now that we know how to connect these simple devices to the MCU pins, let’s look into how to 
let the program running on the CPU talk with those pins. First the program needs to configure 
the hardware within the MCU to set up the path between the CPU and the pins. Then the pro-
gram can read from or write to those pins. Different MCU families use different approaches; here 
we cover the NXP Kinetis MCU family.

anode
Positive terminal of a polarized component (LED, battery, etc.)

cathode
Negative terminal of a polarized component (LED, battery, etc.)
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Preliminaries: Control Registers and C Code

Peripherals are built with control registers to allow us to configure them, determine their status and 
transfer data. Figure 2.4 shows some of the control registers for one peripheral module, the System 
Integration Module (SIM). These control registers appear as special locations in memory, as indi-
cated by the column marked “Absolute address (hex)”. The term “hex” indicates the address is in 
hexadecimal format (base 16). We also can see the width of the register, whether we can read from 
or write to the register, and what its value is after the MCU is reset (e.g. on power-up).

Using CMSIS to Access Hardware Registers with C Code

It would be tedious to have to look up and remember the addresses for the hardware control registers. 
Instead we use special C-language support. The Cortex Microcontroller Software Interface Standard 
(CMSIS) is a hardware abstraction layer for Cortex-M processors. The CMSIS-CORE component 
provides a C-language interface to the processor core and peripherals. This consists of macros and 
functions to perform various operations, and C data structures that map directly to registers.

Consider the SIM_SCGC5 control register. It is one of the SIM peripheral’s control regis-
ters. CMSIS-CORE lets us access the SIM control registers using a C-language data structure 
with a useful name (SIM). The data structure for the SIM peripheral contains 32-bit fields called 
SOPT1, SOPT1CFG, SOPT2, and so forth. To access the SIM_SCGC5 register, we simply write 
SIM->SCGC5. Note that SIM is defined as a pointer to a data structure, which is why we use 
the “->” to select the control register within.

control register
Register used to configure operation of hardware in CPU or peripheral

hexadecimal
Base-sixteen numbering system. Each digit can have one of sixteen values (0 through 9, A, B, C, D, E and F). Symbols 
A through F represent values of ten through fifteen.

Absolute
address
(hex)

4004_7000

4004_7004

4004_8004

4004_800C

4004_8010

4004_8018

4004_8024

4004_8034

4004_8038

4004_803C

4004_8040

32

32

32

32

32

32

32

32

32

32

32

R/W

R/W

R/W

R/W

R/W

R/W

R

R/W

R/W

R/W

R/W

See section

0000_0000h

0000_0000h

0000_0000h

0000_0000h

0000_0000h

Undefined

F000_0030h

0000_0180h

0000_0001h

0000_0100h

12.2.1/183

12.2.2/184

12.2.3/185

12.2.4/187

12.2.5/189

12.2.6/190

12.2.7/192

12.2.8/193

12.2.9/195

12.2.10/197

12.2.11/199

System Options Register 1 (SIM_SOPT1)

SOPT1 Configuration Register (SIM_SOPT1CFG)

System Options Register 2 (SIM_SOPT2)

System Options Register 4 (SIM_SOPT4)

System Options Register 5 (SIM_SOPT5)

System Options Register 7 (SIM_SOPT7)

System Device Identification Register (SIM_SDID)

System Clock Gating Control Register 4 (SIM_SCGC4)

System Clock Gating Control Register 5 (SIM_SCGC5)

System Clock Gating Control Register 6 (SIM_SCGC6)

System Clock Gating Control Register 7 (SIM_SCGC7)

Register name
Width

(in bits)

SIM memory map

Access Reset value Section/
page

Figure 2.4	 A portion of registers for the System Integration Module (SIM) peripheral [1, p. 182].
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There are similar data structures for all of the MCU’s peripherals and their control registers. The 
file MKL25Z4.h defines the peripheral access layer for CMSIS-CORE for KL25Z4-type MCUs. 
We need to be sure that all of our C source files contain the directive #include <MKL25Z4.h> 
before we try to use these features.

Coding Style for Accessing Bits

A control register may hold one item of information (e.g. a count of how many pulses have been 
received) or several items. Each item is called a “field”. Consider the register SIM_SCGC5 shown 
in Figure 2.5. This is a 32-bit register although only 16 bits are shown here. Bit 0 is a field labeled 
LPTMR. Bits 1 through 4 are not used and will always be read as zeros. Bit 5 is a field labeled TSI. 
Bits 9 through 13 are five separate fields labeled PORTA through PORTE.

How can we access fields in these control registers using C code? We often need to access one 
or more specific bits in a control register to set them to specific values. For example, we might 
need to set the fields PORTA and PORTE to 1 in SIM_CGC5.

The fields are located at bits 9 and 13, respectively. We could write a 32-bit value with those 
bits set: the binary representation is 0000 0000 0000 0000 0010 0010 0000 0000. In decimal this 
is 29 + 213 = 512 + 8192 = 8704. However, it is slow and tedious counting zeros and we are likely 
to make errors. Furthermore, the meaning of the code (shown below) is not at all clear.

n = 8704;

We can make the code somewhat easier to write and maintain by forming the value as a sum of 
shifted one bits. We’ll use the left shift operation “a << b,” which shifts operand a to the left by b 
bit positions. We will also use the bitwise or operator “|” rather than addition.

n = (1UL << 9) | (1UL << 13);

Why is there “UL” after the 1? To write to a 32-bit register we need for the compiler to gener-
ate a 32-bit unsigned integer. To ensure the compiler does not use a signed or short integer and 
introduce possible errors, we use the suffix UL to specify that a numeric literal (e.g. 1) should be 
represented as an unsigned long integer, which is 32 bits long for an ARM Cortex-M processor.

We can make the code even easier to understand if we define and use meaningful names for 
the bit positions. When we use them, our code now becomes much easier to read:

#define MY_PORTA_SHIFT (9)
#define MY_PORTE_SHIFT (13)

Reset 0

0

PO
R

T
E

PO
R

T
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R

T
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PO
R

T
B
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R

T
A

0 0 0 0 0 0 0 0 0 0 0 0 0
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R

1

1 0 0

TSI

1

Bit

R

W

15 14 13 12 11 10 9 6 5 4 3 2 1 08 7

Figure 2.5	 SIM_SCGC5 register controls clock gating for ports and two other peripherals [1, p. 206].
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n = (1UL << MY_PORTA_SHIFT) | (1UL << MY_PORTE_SHIFT);

Let’s further simplify things by making a macro to create a mask value by shifting a 1 to the 
proper position:

#define MY_PORTA_SHIFT (9)
#define MY_PORTE_SHIFT (13)
#define MASK(x) (1UL << (x))
n = MASK(MY_PORTA_SHIFT) | MASK(MY_PORTE_SHIFT);

CMSIS-CORE specifies macros for inserting and extracting bit fields into and from control reg-
isters. Each bit field is described by a shift value and a mask. The shift value indicates the field’s 
position in the register, measured as the offset between the field’s bit 0 and the control register’s 
bit 0. The mask value is all zeros except for ones, which indicate the bit field’s location. For exam-
ple, Listing 2.1 shows the definitions related to the SCGC5 bit fields.

Reading, Modifying, and Writing Fields in Control Registers

Now we can see how to use these pieces to access the fields in the control registers:

•	How do we find the current value of the PORTE field? We read the control register SCGC5, 
AND it (using &) with the mask, and then shift it right (using >>) by the shift value:

n = (SIM->SCGC5 & SIM_SCGC5_PORTE_MASK) >> SIM_SCGC5_PORTE_SHIFT;

•	How do we set fields PORTA and PORTE in that register, leaving everything else as zero? We 
use the = assignment operator:

SIM->SCGC5 = SIM_SCGC5_PORTA_MASK | SIM_SCGC5_PORTE_MASK;

•	How do we set fields PORTA and PORTE in that register without modifying anything else? 
This means we need to perform a read/modify/write operation. We read the initial control 

/* SCGC5 Bit Fields */
#define SIM_SCGC5_LPTMR_MASK                     0x1u
#define SIM_SCGC5_LPTMR_SHIFT                    0
#define SIM_SCGC5_TSI_MASK                       0x20u
#define SIM_SCGC5_TSI_SHIFT                      5
#define SIM_SCGC5_PORTA_MASK                     0x200u
#define SIM_SCGC5_PORTA_SHIFT                    9
#define SIM_SCGC5_PORTB_MASK                     0x400u
#define SIM_SCGC5_PORTB_SHIFT                    10
#define SIM_SCGC5_PORTC_MASK                     0x800u
#define SIM_SCGC5_PORTC_SHIFT                    11
#define SIM_SCGC5_PORTD_MASK                     0x1000u
#define SIM_SCGC5_PORTD_SHIFT                    12
#define SIM_SCGC5_PORTE_MASK         0x2000u
#define SIM_SCGC5_PORTE_SHIFT                    13

Listing 2.1  An example of bit field definitions for CMSIS-CORE hardware abstraction layer [2].
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register value, modify the value, and then write the result back to the register. The OR read/
modify/write operator |= does this:

SIM->SCGC5 |= SIM_SCGC5_PORTA_MASK | SIM_SCGC5_PORTE_MASK;

•	How do we clear field PORTA in that register without modifying anything else? Again we 
need to perform a read/modify/write operation. However, the modification involves zeroing 
out the bit for PORTA. We do this by first complementing the mask for PORTA using the ~ 
operator. This flips all of its ones to zeros and zeros to ones. Using the AND read/modify/write 
operator &= will zero out the control register’s bits for Port A’s field:

SIM->SCGC5 &= ~SIM_SCGC5_PORTA_MASK;

Configuring the I/O Path

Figure 2.6 shows an overview of the hardware circuits between an I/O pin and the CPU for a 
Kinetis MCU. The PORTA module selects which peripheral modules (e.g. GPIO, UART0, 
TPM2) will use port A’s pins. Pins can be assigned individually to different peripherals. The MCU 
configures the peripheral module and exchanges data with it. The block labeled SIM provides a 
clock signal to only the active modules, reducing power consumption.

In order to use the GPIO peripheral, we need to do a little preparation. First, we need to 
ensure that a clock signal is provided to the port module or else it will not operate. Second, we 
need to ensure that the GPIO signals inside the integrated circuit are routed to the outside world 
through an I/O pin (or pad).
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Figure 2.6	 An overview of hardware between pin PTA1 and the CPU.

set
To change a bit to one

clear
To change a bit to zero
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Clock Gating

In Kinetis MCUs, the SIM controls system clock gating using control registers SCGC4 through 
SCGC7 to control the peripherals. The MCU reference manual provides full information ([1] 
Chapter 12). Figure 2.5 shows an excerpt from the manual. SCGC5 allows individual control of 
the clock signals to PORTA, PORTB, PORTC, PORTD, and PORTE. Setting a port’s bit in this 
register to one will supply the clock, allowing the port to operate. A zero will disable (gate) the 
clock signal to reduce power consumption by preventing circuit switching. We use the CMSIS-
CORE support in the MKL25Z4.h header file:

SIM->SCGC5 |= SIM_SCGC5_PORTA_MASK;

Connecting a Pin to a Peripheral Module

The PORTA through PORTE modules provide control for each port’s pins. Each bit n of each I/O 
port x has its own 32-bit pin control register (PCR) called PORTx_PCRn to allow individual bit 
configuration. Figure 2.7 shows a few of the PCRs for Port A.

MCUs often include a multiplexer, which is an electronic selector switch. As shown in 
Figure 2.8, this allows a specific pin on the IC package to be connected to one of several possible 
peripheral modules. This provides greater flexibility to PCB designers and reduces MCU package 
size, circuit board size, and costs.

clock gating
Method to disable circuit by blocking clock signal, reducing power consumption

Absolute
address
(hex)

4004_9000

4004_9004

4004_9008

4004_900C

4004_9010

4004_9014

4004_9018

4004_901C

32

32

32

32

32

32

32

32

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

Pin Control Register n (PORTA_PCR0)

Pin Control Register n (PORTA_PCR1)

Pin Control Register n (PORTA_PCR2)

Pin Control Register n (PORTA_PCR3)

Pin Control Register n (PORTA_PCR4)

Pin Control Register n (PORTA_PCR5)

Pin Control Register n (PORTA_PCR6)

Pin Control Register n (PORTA_PCR7)

Register name Width
(in bits)

Access

Figure 2.7	 An example of several pin control registers for a KL25Z microcontroller [1, p. 177].

multiplexer
Electronic selector switch which routes one of N inputs signals to the output. MCU pin multiplexer is bidirectional 
(includes demultiplexer).
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The Kinetis PORT modules provide such a multiplexer for each pin. There is one default posi-
tion (DEFAULT) and seven alternate positions (ALT1 through ALT7) available for each pin. 
These are selected through the PCR’s MUX bits, shown in Figure 2.9.

In order to access a PCR in C, we will use the CMSIS-CORE support from MKL25Z4.h. For 
example, the variable PORTA points to an array called PCR, made of 32 PCRs. To specify the 
PCR for bit 6 of PORTA, we would write PORTA->PCR[6]‌.

The MUX control bits specify multiplexer behavior as shown in Table 2.1. Before writing to 
any PCR, be sure that the clock signal is provided to the port (using the SIM_SCGC5 register 
described above). Otherwise, accessing a PCR may trigger a fault and cause the processor to exe-
cute error handling code (e.g. for a hard fault).

A value of 000 will disable the digital GPIO functionality to allow the connected analog 
peripheral device to use the pin. A nonzero value will provide a variety of alternatives. 001 will 
always enable GPIO whereas the remaining values (010 to 111) will have different effects for dif-
ferent types of chips. For details refer to the MCU’s reference manual ([1] Chapter 11).

The CMSIS-CORE support from MKL25Z4.h includes these macros for accessing the MUX 
field in the PCR. We can use the PORT_PCR_MUX macro to shift the desired value for the 
MUX bit field leftward to the field’s position within the control register:

Reset 0 0 0

0 0 0 0

0

0 0ISF
IRQC

w1c

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 x* x* x*

MUX DSE PFE SRE PE PS

0 x* 0 x* 0 x* x* x*

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31Bit

R

W

Reset

*  Notes:
•  x = Undefined at reset.

Bit

R

W

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Figure 2.9  Pin control register contents [1, p. 183].
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Figure 2.8	 A detailed view of a pin multiplexer.
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#define PORT_PCR_MUX_MASK  0x700u
#define PORT_PCR_MUX_SHIFT 8
#define PORT_PCR_MUX(x) (((uint32_t)(((uint32_t)(x))<<PORT_PCR_MUX_SHIFT))&PORT_  
  PCR_MUX_MASK)

PORT_PCR_MUX_SHIFT indicates the starting position of the least significant bit of the 
field. We will use this to specify the shift value needed to position the bit field within the register. 
PORT_PCR_MUX_MASK contains a one in each bit which makes up the field. ANDing this 
mask with a data value we can ensure that none of the bits for the other fields are set to one. This 
eliminates our accesses from having side effects.

Our switch and LED example system needs one input (the switch on PTA5) and two outputs 
(LEDs 1 and 2 on PTA1 and PTA2). We use the MUX field of the PCRs to connect the pins to the 
GPIO module. As seen in Table 2.1, a value of 1 will select the GPIO module for each of these pins.

#define LED1_SHIFT (1) // on port A
#define LED2_SHIFT (2) // on port A
#define SW1_SHIFT (5)  // on port A

PORTA->PCR[LED1_SHIFT] &= ~PORT_PCR_MUX_MASK; 
PORTA->PCR[LED1_SHIFT] |= PORT_PCR_MUX(1); 
PORTA->PCR[LED2_SHIFT] &= ~PORT_PCR_MUX_MASK; 
PORTA->PCR[LED2_SHIFT] |= PORT_PCR_MUX(1); 
PORTA->PCR[SW1_SHIFT]  &= ~PORT_PCR_MUX_MASK; 
PORTA->PCR[SW1_SHIFT]  |= PORT_PCR_MUX(1); 

Listing 2.2  Using read-modify-write operations to configure port control register multiplexer.

In order to preserve the other fields within the control register, we will use two read–modify–
write operations: first we zero out the bits for the MUX field by ANDing with the complement 
(~) of the mask, then we OR in the new values for the MUX field. The code in listing 2.2 will 
accomplish this.

Table 2.1  Pin Multiplexing Control Field Settings with Examples for Selected Pins

MUX field value 
(bits 10–8) Configuration Pin PTA1 Pin PTA2 Pin PTA5

000 Pin disabled (analog) Touch Sense Input 
TSI0_CH2

Touch Sense Input 
TSI_CH3

No connection

001 Alternative 1: GPIO PTA1 PTA2 PTA5

010 Alternative 2 Serial 
Communication 
UART0_RX

Serial 
Communication 
UART0_TX

USB_CLKIN

011 Alternative 3 Timer TPM2_CH0 Timer TPM2_CH1 Timer TPM0_CH2

100 Alternative 4 No connection No connection No connection

101 Alternative 5 No connection No connection No connection

110 Alternative 6 No connection No connection No connection

111 Alternative 7 No connection No connection No connection
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GPIO Peripheral

The KL25Z GPIO peripheral module has five ports (GPIOA through GPIOE). Although each 
port could be up to 32 bits wide, there are not enough pins on the MCU package to support all 
bits. The MCU’s data sheet pin-out section describes which port bits are implemented [2].

An input GPIO port bit lets us read a single bit digital value on an MCU pin. For example, if 
we connect the pin to a switch, then the program can tell if the switch is open or closed. An out-
put GPIO port bit enables the program to set an MCU pin to be a logic one or zero. For example, 
a program can light or extinguish an LED that is connected to an output pin.

The main logic hardware for a single GPIO port bit is simple and built around registers, as 
shown in Figure 2.10. Each GPIO port bit has its own version of this hardware. A register stores 
one bit of data, which is visible on the output signal (marked Q). A register will read its data 
input (marked D) and store that value every time its clock signal (marked with a triangle) is trig-
gered. These signals are triggered when the CPU writes to or reads from the register’s address, as 
labeled in Figure 2.10. The GPIO port bit has three main registers:

•	Input data is held in the data in register. The MCU’s I/O clock automatically updates this reg-
ister (e.g. 24 million times per second). To read this register, the CPU reads from the Port Data 
Input Register address (GPIOx_PDIR), which enables the buffer (triangle to the right of the 
register) to transmit its contents to the CPU over the data bus.

•	Output data is held in the data out register. The CPU writes data to this register by putting the 
data on the data bus and writing to the Port Data Output Register address (GPIOx_PDOR), 
which triggers the register’s clock signal.

•	The pin’s direction is controlled by the data direction register. The CPU writes data to this 
register by putting the data on the data bus and writing to the Port Data Direction Register 
(PDDR) address (GPIOx_PDDR), which triggers the register’s clock signal. The value of the 
data direction bit controls whether a pin is an input or an output by enabling or disabling the 
buffer from the data out register to the pin driver.

Multiple GPIO bits are grouped together to create a port of one or more bytes that can be accessed 
in parallel for efficiency. MCU designers often make ports as wide as the processor’s native data 
word size, so a 32-bit processor may have 32-bit wide ports.

Data In Register QD

I/O Clock Read Port Data In

Data Out Register DQ

Write Port Data Out

Data Direction Reg. DQ

Write Port Data Direction

Pin Driver

Data Bus Bit n

Pin

Figure 2.10	 The main logic components of a GPIO port.



Embedded Systems Fundamentals with ARM Cortex-M based Microcontrollers: A Practical Approach38

38

GPIO Module Configuration

The direction of most GPIO port bits can be configured. The PDDR GPIOx_PDDR controls data 
direction. A zero in the PDDR register bit makes the corresponding port bit an input, while a one 
makes it an output. When the MCU is powered up or reset, all PDDRs are cleared to zero, mak-
ing them inputs. This is done to protect the hardware against conflicts.

The CMSIS-CORE hardware abstraction layer in MKL25Z4.h provides C-language names 
and data structures for the GPIO control registers. Note that they are named PTA through PTE 
(rather than GPIOA through GPIOE).

Our switch and LED example system needs PTA5 as an input for the switch, and PTA1 and 
PTA2 as outputs for LED1 and LED2. We initialize the PDDR by setting the output bits (Port A 
bits 1 and 2) to one and the input bit (Port A bit 5) to zero. We’ll perform a read/modify/write 
operation to preserve the other bits:

// set LED bits to outputs
PTA->PDDR |= MASK(LED1_SHIFT) | MASK(LED2_SHIFT); 
// clear switch bit to input
PTA->PDDR &= ~MASK(SW1_SHIFT); 

GPIO Module Use

In order to use the GPIO module, we need to read or write data:

•	Input values are read from the GPIOx_PDIR register.
•	Output values are written to the GPIOx_PDOR register.

In order to simplify the software for manipulating individual output bits in a port, the hardware 
provides several special registers that can change specific output bits without affecting the others. 
These are shown in Figure 2.11.

•	Writing a value n to GPIOx_PSOR (Port Set Output Register) will set all the bits that are one 
in n. For example, to set the least significant byte of Port A to all ones, write 0x000000ff to 
GPIOA_PSOR (PTA->PSOR).

•	Writing a value n to GPIOx_PCOR (Port Clear Output Register) will clear all the bits that are 
one in n. For example, to clear the least significant byte of Port A to all zeros, write 0x000000ff 
to GPIOA_PCOR (PTA->PCOR).

Data Out Register DQ

Write Port Data Output

Data Bus Bit n
SCT

Write Port Set Output
Write Port Clear Output

Write Port Toggle Output

Figure 2.11	 Additional control signals to toggle, clear, and set output bits without read/modify/write 
operations.
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•	Writing a value n to GPIOx_PTOR (Port Toggle Output Register) will invert all the bits that 
are one in n. For example, to invert the least significant byte of Port A to all Zeros, write 
0x000000ff to GPIOA_PTOR (PTA->PTOR).

// turn on LED1, turn off LED2
PTA->PSOR = MASK(LED1_SHIFT);
PTA->PCOR = MASK(LED2_SHIFT);

while (1) {
if (PTA->PDIR & MASK(SW1_SHIFT)) {
    // switch is not pressed, so light only LED 2
    PTA->PSOR = MASK(LED2_SHIFT);
    PTA->PCOR = MASK(LED1_SHIFT);
  } else {
    // switch is pressed, so light only LED 1
    PTA->PSOR = MASK(LED1_SHIFT);
    PTA->PCOR = MASK(LED2_SHIFT);
  }
}

Listing 2.3  Code uses PSOR and PCOR to eliminate read-modify-write operations.

Listing 2.3 shows the code for the switch and LED example. We first initialize the output data 
values so LED 1 is off and LED 2 is on. Then we add a loop that reads whether the switch is 
pressed and lights the LEDs appropriately using the port set and port clear control registers. This 
simplifies the code, eliminating the need for a read/modify/write instructions for each port access.

Faster GPIO Access

If we examined the timing of this code, we would find that it takes several extra cycles for each 
access to the GPIO controller and its ports. Communication between the CPU and GPIO con-
troller is delayed because the information must pass through several stages, including a crossbar 
switch and a peripheral bridge, as shown in Figure 2.12. The Kinetis KL25Z MCU includes a sec-
ond path between the CPU and the GPIO controller which bypasses these stages.

To use this faster path, we need to access the GPIO controller and the port data registers 
through a different set of addresses. The CMSIS-CORE hardware abstraction layer provides the 
names FPTA for PTA, FPTB for PTB, and so forth.

Putting the C Code Together

Now we can assemble the complete program, shown in Listing 2.4. We use regular GPIO access, 
leaving the fast GPIO access for a homework exercise.

invert
To change a bit to the opposite value. Also called toggle.
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#include <MKL25Z4.h>

#define LED1_SHIFT (1) // on port A
#define LED2_SHIFT (2) // on port A
#define SW1_SHIFT (5) // on port A

#define MASK(x) (1UL << (x))

void Basic_Light_Switching_Example(void) {
   // Enable Clock to Port A 
   SIM->SCGC5 |= SIM_SCGC5_PORTA_MASK; 
   
   // Make 3 pins GPIO
   PORTA->PCR[LED1_SHIFT] &= ~PORT_PCR_MUX_MASK; 
   PORTA->PCR[LED1_SHIFT] |= PORT_PCR_MUX(1); 
   PORTA->PCR[LED2_SHIFT] &= ~PORT_PCR_MUX_MASK; 
   PORTA->PCR[LED2_SHIFT] |= PORT_PCR_MUX(1); 
   PORTA->PCR[SW1_SHIFT] &= ~PORT_PCR_MUX_MASK; 
   PORTA->PCR[SW1_SHIFT] |= PORT_PCR_MUX(1);

   // set LED bits to outputs
   PTA->PDDR |= MASK(LED1_SHIFT) | MASK(LED2_SHIFT); 
   // clear switch bit to input
   PTA->PDDR &= ~MASK(SW1_SHIFT); 

   // turn on LED1, turn off LED2
   PTA->PSOR = MASK(LED1_SHIFT); 
   PTA->PCOR = MASK(LED2_SHIFT); 
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Figure 2.12	 The CPU can access the GPIO peripheral directly, avoiding delay of a crossbar switch.
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   while (1) {
     if (PTA->PDIR & MASK(SW1_SHIFT)) {
         // switch is not pressed, so light only LED 2
         PTA->PSOR = MASK(LED2_SHIFT);
         PTA->PCOR = MASK(LED1_SHIFT);
       } else {
         // switch is pressed, so light only LED 1
         PTA->PSOR = MASK(LED1_SHIFT);
         PTA->PCOR = MASK(LED2_SHIFT);
       }
   }
}

Listing 2.4  Completed program for LED and switch example.

More Interfacing Examples

Let’s examine some more examples of interfacing.

Freedom KL25Z Example: Driving a Three-Color LED

Let’s see how to use a GPIO port bit to drive the three-color LED on the Freedom board. The sche-
matic in Figure 2.13 shows that the three-color (red, green, blue or RGB) LED D3 has its cathodes 
connected to the MCU through ports PTB18 (red), PTB19 (green), and PTD1 (blue).

Note that this is different from our previous example in Figure 2.3, in which the LED anode is 
connected to the MCU. Because of this difference, clearing the output bit to zero will light the 
LED, and setting the output bit to one will turn off the LED. This configuration is used because 
many MCU output drivers can handle more current this way.

Let’s write a program to configure the port, lighting all possible combinations of the LEDs in a 
repeating sequence. We will follow these steps:
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220

R11
220

+3V3

LED3A
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LED3B
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LED3C
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PTB18

PTB19

PTD1

Figure 2.13	 FREEDOM-KL25Z RGB LED connections.



Embedded Systems Fundamentals with ARM Cortex-M based Microcontrollers: A Practical Approach42

42

•	 Define symbolic names for our LED port bits:

#define RED_LED_SHIFT   (18) 	 // on port B
#define GREEN_LED_SHIFT (19) 	 // on port B
#define BLUE_LED_SHIFT   (1) 	 // on port D

•	Declare the function and enable the clock signal to PORTB and PORTD by setting bits 10 and 
12 in the SIM’s SCGC5 register. A bitwise OR operation (|=) is used to set the bits as it leaves 
the other bits unchanged:

void KL25Z_RGB_Flasher(void) {
   // Enable clock to Port B and Port D
   SIM->SCGC5 |= SIM_SCGC5_PORTB_MASK | SIM_SCGC5_PORTD_MASK;

•	Select pin MUX mode to GPIO by setting the MUX field of PORTB_PCR18, PORTB_PCR19, 
and PORTD_PCR1 to 001:

   // Make 3 pins GPIO
   PORTB->PCR[RED_LED_SHIFT] &= ~PORT_PCR_MUX_MASK; 
   PORTB->PCR[RED_LED_SHIFT] |= PORT_PCR_MUX(1); 
   PORTB->PCR[GREEN_LED_SHIFT] &= ~PORT_PCR_MUX_MASK; 
   PORTB->PCR[GREEN_LED_SHIFT] |= PORT_PCR_MUX(1); 
   PORTD->PCR[BLUE_LED_SHIFT] &= ~PORT_PCR_MUX_MASK; 
   PORTD->PCR[BLUE_LED_SHIFT] |= PORT_PCR_MUX(1); 

•	Define appropriate port bits to be outputs. We will do this by setting bits 18 and 19 in Port B’s 
PDDR register and bit 1 in Port D’s PDDR:

   // Set ports to outputs
   PTB->PDDR |= MASK(RED_LED_SHIFT) | MASK(GREEN_LED_SHIFT);
   PTD->PDDR |= MASK(BLUE_LED_SHIFT); 

•	Turn on the LEDs by clearing the port bits to zeros:

   // Turn on LEDs 
   PTB->PCOR |= MASK(RED_LED_SHIFT) | MASK(GREEN_LED_SHIFT);
   PTD->PCOR |= MASK(BLUE_LED_SHIFT);

•	Now we are ready for the code to light the different LEDs. Note that the last brace ends the 
function KL25Z_RGB_Flasher:

   while (1) {
     for (num = 0; num < 8; num++) {
       if (num & 1)
         PTB->PSOR = MASK(RED_LED_SHIFT);
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       else
         PTB->PCOR = MASK(RED_LED_SHIFT); 
       if (num & 2)
         PTB->PSOR = MASK(GREEN_LED_SHIFT);
       else
         PTB->PCOR = MASK(GREEN_LED_SHIFT); 
       if (num & 4)
         PTD->PSOR = MASK(BLUE_LED_SHIFT);
       else
         PTD->PCOR = MASK(BLUE_LED_SHIFT); 
       Delay(2000000); 
     }
   }
}

•	Notice the Delay function that was added at the end. It slows down the code to make the 
different LED colors visible:

void Delay(volatile unsigned int time_del) {
   while (time_del--) {
      ;
   }
}

Driving a Speaker

We can generate a simple tone with a speaker using the circuit shown in Figure 2.14. We use 
the MCU to toggle to an output (labeled AUDIO) to create a square wave that is filtered by a 
resistor and capacitor to drive a speaker. The frequency of the signal determines the pitch of the 
sound. In this example, we use software and a delay loop to generate the square wave. The code 
in Listing 2.5 toggles the output by writing to the toggle output register (PTOR), and then delays 
for half of the period before repeating the process.

AUDIO

R4
330

C1
1 uF

SP1
SPEAKER/PS12

DGND

Figure 2.14	 Driving a speaker with a digital output.
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#define SPKR_SHIFT (0)

void Init_Speaker( void ) {
   SIM->SCGC5 |= SIM_SCGC5_PORTC_MASK; // enable clock for port C
   PORTC->PCR[SPKR_SHIFT] |= PORT_PCR_MUX(1); // select GPIO 
   PTC->PDDR |= MASK(SPKR_SHIFT); // set I/O bit direction to output
   PTC->PDOR |= MASK(SPKR_SHIFT); // set to 1 initially
}

void Beep(void) {
   Init_Speaker();
   while (1) {
     PTC->PTOR = MASK(SPKR_SHIFT);
     Delay(20000);
   }
}

Listing 2.5  Code to initialize speaker output and drive it with square wave.

We use the same time delay function as in the previous example, but use a shorter time delay:

void Delay(volatile unsigned int time_del) {
   while (time_del--) {
     ;
   }
}

The output waveforms are shown in Figure 2.15. The upper trace shows the digital output of the 
GPIO pin, toggling about every 2 ms. The lower trace shows the filtered voltage after the capacitor.

Note that this software-based approach does not share the processor with the other processing 
tasks, so it limits what else the system can do during tone generation. Microcontrollers have a variety 
of other methods (peripherals such as timers and interrupt service routines) that can generate a square 
wave in hardware with minimal software overhead. We will be learning more about this in Chapter 3.

Figure 2.15	 Waveforms generated by a beep function and speaker circuit.
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Driving the Hot Plate’s Heating Element

In the first chapter we looked at how to use an embedded computer as a hot plate controller. 
The circuit requires a driver to switch the heating element and indicator light on and off. These 
devices require much more power and higher voltages than the MCU can provide. The heating 
element operates at 120 V, drawing about 8 A of current. This is far more than the MCU’s digital 
output can provide. We need a driver circuit that uses a logic-level control signal (3.3 V, a few 
mA) to switch a mains-voltage level signal (120 V, 8 A).

There are various circuits and devices that can be used. One convenient option is called a 
solid-state relay (SSR, Figure 2.16). When a logic-level one is present on the input (terminals 
3 and 4), the internal circuit will connect the output terminals (1 and 2)  electrically. The 
input and output circuits in the SSR are completely electrically isolated to make the circuit 
safer, reducing the risk of circuit damage or user injury from voltage surges on the mains or 
circuit malfunctions.

Additional Pin Configuration Options

The MCU may offer additional options for the circuits driving each pin. These can determine 
an output signal’s strength, rate of change (to reduce generated noise), and other characteristics. 

Figure 2.16	 A solid-state relay allows the MCU to switch devices powered by up to 380 V AC.
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The inputs may be configurable to support different voltage thresholds or provide pull-up or pull-
down resistors.

The Kinetis KL25Z MCU uses Pin Control Registers to control these configuration options 
as well as pin multiplexing described previously. Shown in Figure 2.17, the Pin Control Register 
n (PORTx_PCRn) also controls drive strength (DSE), noise filtering (PFE), slew rate control 
(SRE), and pull resistor behavior (direction (PS) and enablement (PE)) for each I/O pin. The 
PCR also configures event generation (e.g. interrupt and direct memory access requests (IRQC)), 
which will be discussed in Chapters 4 and 9. We examine the most common options below.

Pull-Up Resistors for Inputs

Some types of input signals will not swing the full voltage range from valid logic zero to valid logic 
one. For example, the switch in Figure 2.3 can only pull the input signal to ground. If the switch is 
not pressed, the input signal will be disconnected (“floating”) and sensitive to noise and even static 
electricity. The resistor R1 was added to pull the signal up to VDD when the switch is open.

This pull-up functionality is so useful that most microcontrollers include built-in pull-up 
support. The Kinetis MCUs are no exception. The typical value of the internal pull-up and pull-
down resistors is between 20 and 50 kΩ.

We configure the pull functionality using the PCR (see Figure 2.17). Bit 1 (Pull Enable, or 
PE) controls whether the pull circuitry is enabled (one) or disabled (zero). Some MCUs (but not 
the KL25Z) have GPIO bits that can be pulled up or pulled down. For these devices, bit 0 (Pull 
Select) controls whether the input signal is pulled up (one) or down (zero).

Using this feature, we could simplify the circuit of Figure 2.3 by eliminating the external pull-up 
resistor. This would reduce parts and assembly costs, as well as circuit size. The code would need to 
enable the pull-up resistor by setting PE = 1 and PS = 1 in the PCR corresponding to the input pin.

High Current Drive Outputs

A normal digital output can drive a limited amount of current: KL25 MCU output can handle up 
to 5 mA (at VDD ≥ 2.7 V) or 1.5 mA (at VDD < 2.7 V). This current may not be sufficient for an 
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Figure 2.17	 KL25Z pin control register contents [1, p. 183].
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application (e.g. lighting an LED in a bright environment). In this case an external buffer is typi-
cally used to supply more current. To avoid the need for external circuitry, MCUs often include 
some outputs with a higher drive current capability.

In the KL25 MCUs, there are several outputs with a high drive capability (18 mA at VDD ≥ 
2.7 V, or 6 mA at VDD < 2.7 V). The Drive Strength Enable (DSE) bit controls drive strength. A 
zero specifies a low drive strength, while a one specifies a high drive strength. Which particular 
outputs have high drive capability are described in the reference manual (GPIO Instantiation 
Information in the chapter on Chip Configuration [1]), and in the data sheet (Voltage and 
Current Operating Behaviors [2]).

Summary

This chapter has introduced the concepts of general purpose I/O ports and how to use them in a 
Freescale Kinetis KL25Z MCU using C code and the CMSIS-CORE hardware abstraction layer. 
Input and output interfacing was introduced with examples using LEDs, a switch, and a speaker.

Exercises

1.	 What are the valid input voltage ranges for a KL25Z MCU with VDD = 3 V? With 2 V?
2.	 What is the actual value of VDD on your MCU board? Use a multimeter to measure this 

voltage.
3.	 Examine the schematic for your Freedom KL25Z board:

a.	 How many GPIO port bits are available for Port A?
b.	 Port B?
c.	 Port C?
d.	 Port D?
e.	 Port E?

4.	 Which digital outputs on the KL25 subfamily support high drive capability? Refer to the 
MCU’s data sheet or reference manual.

5.	 Calculate the resistor values needed to limit current through the blue and red LEDs of 
Figure 2.3 to 18 mA each. Assume that the supply voltage VDD is 3.0 V.

6.	 Convert the program from the section “Putting the C Code Together” to use fast GPIO access 
rather than regular GPIO.

7.	 Consider a program that uses bits 0 through 5 on Port E as GPIO inputs, and bits 16 through 
20 as GPIO outputs:
a.	 What control register settings are needed?
b.	 Write a C code to implement these control register settings.

8.	 Consider a system with a KL25Z128VLK4 MCU, one switch, and four LEDs. As long as the 
switch is not pressed, all lights shall be turned off. When the switch is pressed, the LEDs shall 
start to turn on one at a time (starting with LED 0), with a delay of roughly ½ second per LED. 
After all the LEDs are turned on, they shall remain on until the switch is released. The selec-
tion of port bits for the switch and the LEDs is your choice. The following table shows the 
required sequence of LED activity, assuming the switch is pressed at time T1 and released at 
time T2.
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Time (sec) Switch LED0 LED1 LED2 LED3

< T1 Not pressed off off off off

T1 Pressed on off off off

T1 + 0.5 Pressed on on off off

T1 + 1.0 Pressed on on on off

T1+1.5 Pressed on on on on

T2 Not pressed off off off off

a.	 What control register settings are needed?
b.	 Write a C program to implement this system.
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Overview
In this chapter, we explore the basic concepts of how to make a microcontroller unit (MCU) per-
form multiple software activities apparently simultaneously, providing the illusion of concurrent 
execution. Embedded systems use peripheral hardware to perform some activities, while other 
activities are performed in software on the central processing unit (CPU). In order to get every-
thing done on time and provide the illusion of concurrent processing, the processor’s time needs 
to be shared among these activities. We demonstrate these processor scheduling concepts by 
starting with a basic program and then enhancing it to improve its modularity, responsiveness, 
and CPU overhead. Figure 3.1 presents an overview of how these topics are related.

Concepts

In order to investigate the concepts of concurrency, we will consider a system with an MCU, two 
switches, and an RGB (red, green, blue) LED.1

•	When switch 1 is not pressed, the system displays a repeating sequence of colors (red, then 
green, then blue).

•	When switch 1 is pressed, the system makes the LED flash white (all LEDs on) and off (all LEDs 
off) until the switch is released.

modularity
Measure of how program is structured to group related portions and separate independent portions

responsiveness
Measure of how quickly a system responds to an input event

CPU overhead
Portion of time CPU spends executing code which does not perform useful work for the application

Starter program

Interrupts

Shorter tasks

Task prioritization

Task preemption

Task-based program

Using hardware
peripherals

Removing polling
and busy-waiting

Less CPU overhead

Better modularity

Better responsiveness

Figure 3.1	 An overview of concurrency concepts presented in this chapter. Topics in bold are examined 
in detail.

	1	 This LED can create a wide range of colors by changing the brightness of each LED. White is created by lighting all three LED 
colors simultaneously.
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•	As long as switch 2 is pressed, faster timing is used for the flashing and RGB sequences.

The time delay between the user pressing the switch and seeing the LED flash white is 
the system’s response time for switch 1.  A  shorter response time is better. How we share 
the processor’s time among the tasks is one of the main factors determining the system’s 
responsiveness.

Starter Program

Let’s start with a simple program for the LED flasher. We will put everything into one loop that 
reads the switches and lights the LEDs accordingly. This loop will use functions to control the 
LEDs (Control_​RGB_​LEDs) and delay program execution (Delay). It will use a macro to read 
the switches (SWITCH_​PRESSED).

Program Structure

#define W_​DELAY_​SLOW 400
#define W_​DELAY_​FAST 200
#define RGB_​DELAY_​SLOW 4000
#define RGB_​DELAY_​FAST 1000
void Flasher(void) {
         uint32_​t w_​delay = W_​DELAY_​SLOW;
         uint32_​t RGB_​delay = RGB_​DELAY_​SLOW;
         while (1) {
                 if (SWITCH_​PRESSED(SW1_​POS)) { //​ flash white
                         Control_​RGB_​LEDs(1, 1, 1);
                         Delay(w_​delay);
                         Control_​RGB_​LEDs(0, 0, 0);
                         Delay(w_​delay);
                 } else { //​ sequence R, G, B
                         Control_​RGB_​LEDs(1, 0, 0);
                         Delay(RGB_​delay);
                         Control_​RGB_​LEDs(0, 1, 0);
                         Delay(RGB_​delay);
                         Control_​RGB_​LEDs(0, 0, 1);
                         Delay(RGB_​delay);
                 }
                 if (SWITCH_​PRESSED(SW2_​POS)) {
                         w_​delay = W_​DELAY_​FAST;
                         RGB_​delay = RGB_​DELAY_​FAST;
                 } else {
                         w_​delay = W_​DELAY_​SLOW;
                         RGB_​delay = RGB_​DELAY_​SLOW;
                 }
         }
}

Listing 3.1  Initial LED flasher code.
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The core of the program is shown in Listing 3.1. The program will first check to see if switch 1 is 
pressed. If so, the code will make the LED white, delay for some time, turn off the LED, and delay 
for some time again.

If switch 1 is not pressed, the program will first light the red LED (turning off the others) and then 
wait for a fixed time. It will then light the green LED (turning off the others) and then wait for a 
fixed time. Finally, it will turn on the blue LED (turning off the others) and wait for a fixed time.

After flashing the LEDs, the code updates the time delays based on whether switch 2 is pressed 
or not. The program will then repeat.

The support functions Delay and Control_​RGB_​LEDs are presented in Listing 3.2. Initialization 
code and header files are not included here, but are essentially the same as shown in Chapter 2.

Analysis

How responsive is our system to switch 1 being pressed and released? Figure 3.2 shows that if we 
press the switch when the green LED is lit, the system does not start flashing until the green turns 
off, the blue turns on, and then turns off. The program only polls the switch between full red/​
green/​blue color cycles, or white flash cycles.

So we must hold the switch until the cycle ends. In fact, if we press the switch briefly during 
the color cycle and release it before the end, the program will not detect it, missing the input 
event. Input events shorter than the red/​green/​blue color cycle may be lost. The longer the code 
takes to run, the slower the cycle, and the greater the chance of missing an input.

void Delay(unsigned int time_​del) {
      volatile int n;
      while (time_​del-​-​) {
          n = 1000;
          while (n-​-​)
                 ;
      }
}

void Control_​RGB_​LEDs(int r_​on, int g_​on, int b_​on) {
        if (r_​on)
          PTB-​>PCOR = MASK(RED_​LED_​POS);
       else
          PTB-​>PSOR = MASK(RED_​LED_​POS);
       if (g_​on)
          PTB-​>PCOR = MASK(GREEN_​LED_​POS);
       else
          PTB-​>PSOR = MASK(GREEN_​LED_​POS);
       if (b_​on)
          PTD-​>PCOR = MASK(BLUE_​LED_​POS);
       else
          PTD-​>PSOR = MASK(BLUE_​LED_​POS);
}

Listing 3.2  Support functions for starter program. Delay uses busy-waiting in a loop. Control_RGB_LEDs 
target LEDs in active-low configuration (output pin connected to LED cathode).
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Similarly, the sooner the code finishes running, the more responsive the system is. Notice in 
Figure 3.2 how releasing the switch results in a very short delay until the LED begins color cycling. 
This short delay results from the short duration of the white flash, which enables the program to 
check the switch more frequently.

Another disadvantage of this code is that the processor wastes quite a bit of time in its delay 
function. This kind of waiting is called busy-​waiting and should be avoided except for certain 
special cases. We will see how later.

Finally, the program mixes together different activities in a single function. As the program grows 
larger, it will be more difficult to maintain and enhance because of these interdependencies. Poorly 
structured code is often called spaghetti code because so many different parts are tangled together.

To summarize, the system is sluggish and inefficient, may ignore brief inputs, and is structured badly.

Creating and Using Tasks

Let’s restructure the code into three separate tasks. This will make it easier to develop and main-
tain the code. A task is a subroutine that performs a specific activity (or a closely related set of 
activities). Tasks simplify code development by grouping related features and processing together, 
and separating unrelated parts. Each task has a root function, which may call other functions as 
subroutines as needed.

busy-waiting
Wasteful method of making a program wait for an event or delay. Program executes test code repeatedly in a tight loop, 
not sharing time with other parts of program.

spaghetti code
Code which is poorly structured because it entangles unrelated features, complicating development and maintenance.

root function
A task’s main software function, which may call other functions as subroutines.

Switch inputs

LED output

Time

Delay

Flashing White

Switch 1 pressed

R RG GB B R G B

Figure 3.2	 The response of an LED initial flasher program to switch press and release.
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Program Structure

The first task has a root function called Task_​Read_​Switches, shown in Listing 3.3. It will 
determine which switches are pressed and share that information with the other tasks. We 
will use global variables to do this in this example, but later we will learn why global variables 
are dangerous and how to use other mechanisms to share information. We use the g_​ prefix 
in their names to indicate that these are global variables. This is helpful but not essential; 
it will help us and other code developers in the future by making this information obvious. 
Many aspects of coding style come from the desire to prevent misunderstandings and the 
resulting mistakes.

The code reads switch 1 to determine whether the LED should flash white or sequence through 
the RGB colors, and sets variable g_​flash_​LED to one (to request flashing) or zero (to request the 
color sequence). The code then reads switch 2 to determine the time delays for the LED flashing 
and RGB sequencing tasks, setting g_​w_​delay and g_​RGB_​delay accordingly.

void Task_​Flash(void) {
         if (g_​flash_​LED == 1) {         //​ Only run task when in flash mode
                 Control_​RGB_​LEDs(1, 1, 1);
                 Delay(g_​w_​delay);
                 Control_​RGB_​LEDs(0, 0, 0);
                 Delay(g_​w_​delay);
         }
}

Listing 3.4  Task_​Flash is responsible for flashing the LED white and off once.

#define W_​DELAY_​SLOW 400
#define W_​DELAY_​FAST 200
#define RGB_​DELAY_​SLOW 4000
#define RGB_​DELAY_​FAST 1000

uint8_​t g_​flash_​LED = 0;                          //​ initially just do RGB sequence
uint32_​t g_​w_​delay = W_​DELAY_​SLOW;            //​ delay for white flash
uint32_​t g_​RGB_​delay = RGB_​DELAY_​SLOW;     //​ delay for RGB sequence

void Task_​Read_​Switches(void) {
          if (SWITCH_​PRESSED(SW1_​POS)) {      //​ flash white
                 g_​flash_​LED = 1;
          } else {
                 g_​flash_​LED = 0;                 //​ RGB sequence
          }
          if (SWITCH_​PRESSED(SW2_​POS)) {
                 w_​delay = W_​DELAY_​FAST;
                 RGB_​delay = RGB_​DELAY_​FAST;
          } else {
                 w_​delay = W_​DELAY_​SLOW;
                 RGB_​delay = RGB_​DELAY_​SLOW;
          }
}

Listing 3.3 � Task_​Read_​Switches is responsible for updating the global variables to share information 
based on switches.
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The second task has a root function called Task_​Flash, shown in Listing 3.4. This function first 
checks to see if it has any work to do. If g_​flash_​LED is equal to one, this indicates the LED needs 
to flash white. The code will flash the LED white, delay for a time based on g_​w_​delay, turn off 
the LED, delay again, and then return. Otherwise, the code will return immediately.

void Task_​RGB(void) {
         if (g_​flash_​LED == 0) {         //​ only run task when NOT in flash mode
                 Control_​RGB_​LEDs(1, 0, 0);
                 Delay(g_​RGB_​delay);
                 Control_​RGB_​LEDs(0, 1, 0);
                 Delay(g_​RGB_​delay);
                 Control_​RGB_​LEDs(0, 0, 1);
                 Delay(g_​RGB_​delay);
         }
}

Listing 3.5  Task_​RGB is responsible for lighting the LEDs once in the sequence red, green, blue.

Task_Read_
Switches

Task_Flash

g_w_delay g_flash_LED g_RGB_delay

Task_RGB

RGB LEDs

Switches

Figure 3.3	 Tasks communicate information through shared global variables.

The third task has a root function called Task_​RGB , shown in Listing 3.5. This task also first 
checks to see if it has any work to do. If g_​flash_​LED is equal to zero, this indicates that the LED 
needs to sequence through the RGB colors. The code will cycle the LED though the colors with 
appropriate delays (determined by g_​RGB_​delay), turn off the LEDs, and then return. Otherwise, 
the code will return immediately.

Figure  3.3 shows the overview of how the tasks (in ovals) communicate with each other 
through the global variables (rectangles), with the direction of the arrow indicating the flow of 
information from writer to reader. Note that Task_​Read_​Switches writes to all three global vari-
ables, whereas the other tasks read from just two of them.
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Finally, we need the scheduler function (Flasher) in Listing 3.6 that simply calls the three tasks 
in order and then repeats. Notice how simple the scheduler is, calling each function repeatedly in 
order. This approach is called cooperative multitasking: multiple tasks can run on the CPU 
because they cooperate by yielding the processor to other tasks when they have finished their 
work. If one task takes a long time to run, then it will delay the other tasks by that much time.

We could speed up the code slightly by moving the tests of the variable g_​flash_​LED into the 
scheduler, but this would defeat our goal of keeping as much task-​related code in the task itself, cou-
pling the scheduler more closely to the tasks. However, we will examine this idea later in this chapter.

Analysis

The program is now structured much better because it isolates the three tasks from each other. 
However, the responsiveness is no better than the first program. In fact, it is slightly worse because 
of the overhead of the scheduler calling the task functions.

Figure 3.4 shows how the switch press is only recognized when Task_​Read_​Switches can run, 
which occurs after Task_​RGB completes. The switch release is detected more quickly because 
Task_​Flash completes sooner.

cooperative multitasking
Scheduling approach where tasks share CPU by voluntarily yielding it to other tasks

void Flasher(void) {
         while (1) {
                  Task_​Read_​Switches();
                  Task_​Flash();
                  Task_​RGB();
         }
}

Listing 3.6  Flasher function acts as a scheduler that is responsible for running each task.

Time

Switch 1 pressed

R G B

Task_RGB

Switch inputs

Task_Flash

LED output R G B R G B

DelayTask_Read
_Switches

Figure 3.4  Response of task-​based LED flasher program to switch press and release.
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In order to improve the responsiveness, let’s first examine the delay between our changing the 
switch (pressing or releasing it) and the LEDs flashing differently. As shown in Figure 3.5, this 
delay has two parts:

•	First, there is a delay T1 between when the switch is pressed (or released) and when the vari-
able g_​Flash_​LED is updated (by Task_​Read_​Switches).

•	Second, there is a delay T2 between when the variable g_​Flash_​LED is updated (by Task_​Read_​
Switches) and the LED starts flashing (in Task_​Flash).

T1 is large in Figure 3.4 because the switch is pressed while Task_​RGB is running. Task_​Read_​
Switches can run only after Task_​RGB completes (and it is a long task). A  task that takes a 
long time to complete will increase T1 significantly, especially if an event (e.g. switch press) 
occurs early in the task. If there are other tasks that run after Task_​RGB but before Task_​Read_​
Switches, they will also increase T1.

T2 is small in Figure 3.5 because Task_​Flash runs immediately after Task_​Read_​Switches (and 
it is short). If instead we changed the loop so that the task order was Task_​Read_​Switches, Task_​
RGB, and then Task_​Flash, T2 would be increased by the time taken to run Task_​RGB. In this case it 
would be short, since Task_​RGB would return after determining that g_​Flash_​LED was one. If there 
are other tasks that run after Task_​Read_​Switches but before Task_​Flash, they will increase T2.

Improving Responsiveness

So how can we reduce these times?
A very bad approach would be to have Task_​RGB call Task_​Read_​Switches (and maybe even 

Task_​Flash) after lighting each LED. This tangles the tasks together, complicating future code 
development.

There are much better ways to improve responsiveness that do not make a mess of the code. In 
this section, we will discuss the following approaches:

•	Using interrupts to provide event-​triggered processing

Time

Switch 1 pressed

Task_RGB

Switch Inputs

Task_Flash

LED Output B

T1
Task_Read
_Switches

0 T2g_Flash_LED 1

Figure 3.5  Delay between pressing the switch and the LED flashing differently has two parts.
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•	Restructuring tasks to complete earlier
•	Using hardware so tasks complete earlier

We will also introduce the following advanced topics but will not cover them in detail:

•	Prioritizing tasks that the scheduler will run first
•	Enabling tasks to preempt each other
•	Moving waiting out of tasks into the scheduler

Interrupts and Event Triggering

Our code explicitly checks to see if processing is needed, for example, to determine if the timer 
has expired yet. This is called polling. There is an alternative approach called event-triggering, 
in which the processor gets notifications from hardware that a specific event has occurred and 
processing is needed.

Software that uses event-triggering runs much more efficiently than polling, since no time 
needs to be wasted checking to see if processing is needed. Even better, the event-​triggered 
approach leads to a much more responsive system since events are detected much sooner. 
This may allow a much slower processor to be used, saving money, power, and energy.

Peripheral hardware on microcontrollers explicitly supports this event-​triggered approach 
through the interrupt system. A peripheral can generate an interrupt request (IRQ) to the pro-
cessor to indicate that an event has occurred. The processor will finish executing the current 
instruction in the program, save the program’s current information, and then start to execute a 
special part of the program called an interrupt service routine (ISR) (or handler) in order to ser-
vice that interrupt request. After completing the ISR, the processor reloads the program’s saved 
information and then resumes its execution at the next instruction.

 

polling
Scheduling approach in which software repeatedly tests a condition to determine whether to run task code

event-triggering
Scheduling approach in which task software runs only when triggered by an event

interrupt request (IRQ)
Hardware signal indicating that an interrupt is requested

interrupt service routine (ISR)
Software routine which runs in response to interrupt request. Also called a handler.

handler
Software routine which runs in response to interrupt or exception request.
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For many embedded systems, a combination of polling and ISRs is enough to meet requirements 
quickly and inexpensively. Event-​driven processing in ISRs handles the urgent processing activities, 
while less-​urgent work is performed on a polling basis in the background. Often an ISR will do the 
initial urgent processing and then save partial results for later, more time-​consuming processing.

Program Structure

Let’s modify our system by using interrupts to detect when a switch has been pressed or released. 
As shown in Figure  3.6, we replace Task_​Read_​Switches with an ISR. The ISR updates the 
shared variables, which in turn are read by the tasks.

Interrupt 
Service Routine

Task_Flash

g_w_delay g_flash_LED g_RGB_delay

Task_RGB

RGB LEDs

Switches

Figure 3.6   Interrupt service routine communicates information to tasks through shared global variables.

#define W_​DELAY_​SLOW 400
#define W_​DELAY_​FAST 200
#define RGB_​DELAY_​SLOW 4000
#define RGB_​DELAY_​FAST 1000

volatile uint8_​t g_​flash_​LED = 0; //​ initially don’t flash LED, just do RGB sequence
volatile uint32_​t g_​w_​delay = W_​DELAY_​SLOW; //​ delay for white flash
volatile uint32_​t g_​RGB_​delay = RGB_​DELAY_​SLOW; //​ delay for RGB sequence

void PORTD_​IRQHandler(void) { 
     //​ Read switches
     if ((PORTD-​>ISFR & MASK(SW1_​POS))) { 
          if (SWITCH_​PRESSED(SW1_​POS)) { //​ flash white
               g_​flash_​LED = 1;
          } else {
               g_​flash_​LED = 0;
          }
     }
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void Flasher(void) {
       while (1) {
           Task_​Flash();
           Task_​RGB();
       }
}

Listing 3.8  New scheduler function for LED flasher does not read switches.

Time

Switch 1 pressed

R G B

Task_RGB

Switch inputs

Task_Flash

LED output R G B R G B

DelayPORTD_
IRQHandler

Figure 3.7   �Response with switches read by interrupt service routine. Switch-reading code in PORTD_​
IRQ_​Handler runs only when needed.

     if ((PORTD-​>ISFR & MASK(SW2_​POS))) { 
          if (SWITCH_​PRESSED(SW2_​POS)) { //​ short delays
               g_​w_​delay = W_​DELAY_​FAST;
               g_​RGB_​delay = RGB_​DELAY_​FAST;
          }    else {
               g_​w_​delay = W_​DELAY_​SLOW;
               g_​RGB_​delay = RGB_​DELAY_​SLOW;
          }
     }
     //​ clear status flags 
     PORTD-​>ISFR = 0xffffffff;
}

Listing 3.7  Source code for shared variables and interrupt service routine (handler).

The source code is shown in Listing 3.7. Note that the shared variables are now defined as volatile, 
which indicates to the compiler that they may change unexpectedly (e.g. an ISR may change them). 
We omit the code needed to configure the port peripheral to request an interrupt, and to enable inter-
rupts. We will cover these details in Chapter 4.

Finally, the scheduler function no longer calls Task_​Read_​Switches, as shown in Listing 3.8
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Analysis

Figure 3.7 shows the resulting behavior. First, the code to read switches (in PORTD_​IRQHandler) 
now executes only when needed, freeing up time for other tasks to run. Second, the delay between 
pressing the switch and the LED changing its flashing pattern has been reduced. The first com-
ponent of the delay (from switch press to updating the variable g_​Flash_​LED) has been reduced 
significantly. Microcontrollers can respond to interrupts very quickly. For the ARM Cortex-​M0+ 
CPUs, there is a delay of fifteen clock cycles from interrupt request to the start of the handler 
execution. With a 48-​MHz CPU clock rate, this is a fast 312.5 ns.

Using an interrupt has improved the responsiveness somewhat. But it has not addressed 
the second delay, which depends on the task switching. The scheduler that we are using can-
not switch to a different task until after the currently running task has completed. It is called a  
non-​preemptive scheduler. In this example, the RGB task takes a long time to run and hence 
limits the responsiveness.

One way to address the second delay is to move more code from the task into the inter-
rupt handler, so it runs without any task scheduling delay. When this approach is possible, 
the developer needs to be careful to keep the handler from growing too long, which will 
reduce the responsiveness of all other code (and interrupt handlers). It is also surprisingly 
easy to turn interrupt handlers into spaghetti code, which is hard to understand, maintain, 
and enhance.

Consider the example in Figure 3.7. We can speed up the response to switch presses by making 
the interrupt handler light all LEDs (making white). But as soon as the handler finishes, Task_​
RGB resumes execution. It completes its delay, then lights the blue LED, waits for another delay, 
and then finishes. Task_​Flash finally runs and flashes the LED correctly. How can the interrupt 
handler make Task_​RGB stop running? Since the handler changes g_​Flash_​LED based on the 
switch position, an obvious way is to test that variable’s value more often.

non-preemptive scheduler
Scheduler which does not allow tasks to preempt each other

void Task_​Flash(void) {
      if (g_​flash_​LED == 1) {        //​ Only run task when in flash mode
         Control_​RGB_​LEDs(1, 1, 1);
      }
      if (g_​flash_​LED == 1) {        //​ Only run task when in flash mode
         Delay(g_​w_​delay);
      }
      if (g_​flash_​LED == 1) {        //​ Only run task when in flash mode
         Control_​RGB_​LEDs(0, 0, 0);
      }
      if (g_​flash_​LED == 1) {        //​ Only run task when in flash mode
         Delay(g_​w_​delay);
      }
}
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void Task_​RGB(void) {
      if (g_​flash_​LED == 0) {        //​ only run task when NOT in flash mode
         Control_​RGB_​LEDs(1, 0, 0);
      }
      if (g_​flash_​LED == 0) {        //​ only run task when NOT in flash mode
         Delay(g_​RGB_​delay);
      }
      if (g_​flash_​LED == 0) {        //​ only run task when NOT in flash mode
         Control_​RGB_​LEDs(0, 1, 0);
      }
      if (g_​flash_​LED == 0) {        //​ only run task when NOT in flash mode
         Delay(g_​RGB_​delay);
      }
      if (g_​flash_​LED == 0) {        //​ only run task when NOT in flash mode
         Control_​RGB_​LEDs(0, 0, 1);
      }
      if (g_​flash_​LED == 0) {        //​ only run task when NOT in flash mode
         Delay(g_​RGB_​delay);
      }
}

Listing 3.9  A very bad idea: adding more tests to help the tasks stop running earlier if not needed.

void Delay(unsigned int time_​del, int called_​by_​Task_​Flash) {
      volatile int n;
      while (time_​del-​-​) {
         if ( ((called_​by_​Task_​Flash == 1) && (g_​Flash_​LED == 1)) ||
         ((called_​by_​Task_​Flash == 0) && (g_​Flash_​LED == 0))) {
              n = 1000;
              while (n-​-​)
                   ;
              }
      }
}

Listing 3.10  More of a bad thing: adding tests and a caller parameter to the Delay function.

The resulting code in Listing 3.9 is messy and inefficient. And it doesn’t work that well. If the 
switch is pressed while the Delay function is running, the task won’t finish until Delay completes. To 
get a better responsiveness, we would have to test g_​Flash_​LED in the function Delay. But remember 
that both Task_​Flash and Task_​RGB call Delay, so we would need two versions of Delay, or a way of 
tracking which function called it (e.g. by passing a parameter).

One possible version of a new delay function is shown in Listing 3.10. Note that we now need to 
change the task codes to call Delay with a parameter indicating the caller task. This is a wonderful 
example of spaghetti code and how not to do things!
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Reducing Task Completion Times with Finite State Machines

We wish to modify a task so it returns before it has finished all of its work. This gives the 
scheduler more frequent opportunities to run other tasks, improving its responsiveness. We 
will use a structure called the finite state machine (FSM), rather than the spaghetti code of 
Listing 3.9 and Listing 3.10.

To make the task work correctly, we will need to make some changes to the task’s source code. We 
may need to call the task several times to complete all of its work. We will also need to keep track of 
the task’s progress so it completes all the work necessary in the correct order and without duplication.

We could combine this approach with using an interrupt to further improve responsiveness. To 
simplify the explanation, we do not do so here.

Program Structure

state machine
State-based system model with rules for transitions between states

finite state machine (FSM)
A type of state machine with all states and transitions defined.

void Task_​RGB(void) {
         if (g_​flash_​LED == 0) {         //​ only run task when NOT in flash mode
                 //​ Red state
                 Control_​RGB_​LEDs(1, 0, 0);
                 Delay(g_​RGB_​delay);

                 //​ Green state
                 Control_​RGB_​LEDs(0, 1, 0);
                 Delay(g_​RGB_​delay);

                 //​ Blue state
                 Control_​RGB_​LEDs(0, 0, 1);
                 Delay(g_​RGB_​delay);
         }
}

Listing 3.11  Identifying code for different states in Task_​RGB. 

Consider the code for Task_​RGB, shown in Listing 3.11. We will convert the body of the task 
into a state machine to make this all work.

A state machine executes the code of one state each time it is called, and then returns. We 
break up the code into separate states after each long-​running operation (delay functions, in this 
case). If we had conditionals or loops in the code, we could still create states, but would need to 
ensure each state starts and ends at the same level of conditional nesting or looping.

We can create a state transition diagram (as in Figure 3.8) to describe how the state machine 
operates. Circles represent states, and the lines between them represent possible transitions. 
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A transition is labeled with text to indicate the trigger event or the condition under which it 
occurs. An unlabeled transition will execute automatically after the state completes.

The system is initialized to the red state, as indicated by the transition labeled “reset”. The 
system stays in the red state until a time-​out occurs, when it exits the red state and enters the 
green state. After another time-​out, the system exits the green state and enters the blue state. 
Yet another time-​out later, the system exits the blue state and enters the red state. The cycle 
then repeats.

We can also represent this information with a state transition table, as shown in Table 3.1. 
In this example, there is only one type of input event (the time-​out), but other FSMs may have 
more types. In that case, there would be a next state column for each event. Note that a state may 
have several next states, based on conditions within the FSM or which input event occurred.

Table 3.1 Task_​RGB Finite State Machine

State Action Next state (time-​out event)

ST_​RED Light red LED ST_​GREEN

ST_​GREEN Light green LED ST_​BLUE

ST_​BLUE Light blue LED ST_​RED

void Task_​RGB_​FSM(void) {
      static enum {ST_​RED, ST_​GREEN, ST_​BLUE, ST_​OFF} next_​state;
 
      if (g_​flash_​LED == 0) { //​ only run task when NOT in flash mode
         switch (next_​state) {
              case ST_​RED:
                   Control_​RGB_​LEDs(1, 0, 0);
                   Delay(g_​RGB_​delay);
                   next_​state = ST_​GREEN;
                   break;

Time-out

Time-outTime-out

Reset Green On
and Wait

Blue On 
and Wait

Red On 
and Wait

Figure 3.8	 State transition diagram for Task_​RGB.
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              case ST_​GREEN:
                   Control_​RGB_​LEDs(0, 1, 0);
                   Delay(g_​RGB_​delay);
                   next_​state = ST_​BLUE;
                   break;
              case ST_​BLUE:
                   Control_​RGB_​LEDs(0, 0, 1);
                   Delay(g_​RGB_​delay);    
                   next_​state = ST_​RED;
                   break;
              default:
                   next_​state = ST_​RED;
                   break;
         }
      }
}

Listing 3.12  Source code for the finite state machine version of Task_​RGB.

void Task_​Flash_​FSM(void) {
      static enum {ST_​WHITE, ST_​BLACK} next_​state = ST_​WHITE;

      if (g_​flash_​LED == 1) { //​ Only run task when in flash mode
          switch (next_​state) {
               case ST_​WHITE:
                    Control_​RGB_​LEDs(1, 1, 1);
                    Delay(g_​w_​delay);
                    next_​state = ST_​BLACK;
                    break;
               case ST_​BLACK:
                    Control_​RGB_​LEDs(0, 0, 0);
                    Delay(g_​w_​delay);
                    next_​state = ST_​WHITE;
                    break;
               default:
                    next_​state = ST_​WHITE;
                    break;
          }
      }
}

Listing 3.13  Source code for the finite state machine version of Task_​Flash.

The source code for Task_​RGB_​FSM (our state machine version of Task_​RGB) appears in 
Listing 3.12.

We use a state variable called next_​state to track the next state to execute. Note that this vari-
able must be declared as static so that it retains its value from one subroutine call to the next. In 
order to make the code easier to understand, we make next_​state an enumerated type. These use 
names (e.g. ST_​RED) to represent integer values (e.g.  0). The enum keyword is followed by a list 
of names, and then the name of the variable.

A switch statement selects which code to execute based on the value of next_​state. Each case 
statement contains the code for one state and may update the state variable for future calls to 
Task_​RGB_​FSM.
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The source code for Task_​Flash_​FSM is similarly modified and appears in Listing 3.13. Note 
that the two variables named next_​state declared in Task_​Flash_​FSM and Task_​Flash_​RGB are 
separate variables. They are called local variables because they are only visible and accessible to 
code in the function where they are declared. Other functions cannot access Task_​Flash_​FSM’s 
version of next_​state. Finally, the scheduler function does not need to be modified beyond calling 
the FSM versions of the tasks. It continues to call them repeatedly.

Analysis

Figure 3.9 shows the system’s behavior, and we see that the responsiveness is much better. The 
flashing starts after the current stage of the sequence (green here), rather than the last stage 
(blue). If this is still not responsive enough, we could split up the delay into two or more states to 
reduce the response time.

Using Hardware to Save CPU Time

As mentioned in the introduction, the microcontrollers used in embedded systems include spe-
cialized hardware circuits called peripherals. These devices offload and accelerate specific types 
of work from the processor or perform activities that the CPU core is not capable of performing. 
This peripheral hardware is able to execute essentially independently of the processor. Embedded 
system designers use the peripherals to reduce the computational load on the processor, reducing 
the need for a high-​speed processor and saving costs.

One common peripheral is called a timer or a counter. At its heart, a timer is a counter circuit 
that counts how many pulses it receives. Using a pulse source with a known frequency allows us 
to measure time. The peripheral can generate an event after a specified time delay, measure pulse 
width, generate pulse outputs, and measure pulse counts. We will study timer/​counter peripherals 
more closely in Chapter 7.

Note that the processor may be capable of doing these operations in software, but with much 
greater complexity and less accuracy. Furthermore, the processor may need to spend all of its time 
on this single activity to get adequate timing precision.

Time
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R G B

Task_RGB

Switch inputs

Task_Flash

LED output

Delay

Task_Read
_Switches

R G R G B R

Figure 3.9 � Response of task-​based LED flasher program with RGB task implemented as finite state 
machine.
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Program Structure

We will use a timer to replace the call to the function called Delay, which performs busy-​waiting 
to incur a time delay. We will introduce a new state in the FSM to wait for the delay to complete. 
The FSM does not advance past this state until the delay has completed. If there are multiple 
such delays, each will have a new state. Figure 3.10 shows the modified state machine with three 
wait states added (for red, green, and blue delays).

In this example, we are using a particular type of timer called the periodic interrupt timer 
(PIT). We load the timer with a starting count value (using Init_​PIT) and then start it running 
(using Start_​PIT). The timer receives periodic pulses from a clock source (24 MHz in this case). 
With each pulse, the timer decrements the timer’s count value by one. When the count value 
reaches zero, the timer will set a flag in one of its control registers to indicate that the timer has 
expired. We will use the software function PIT_​Expired to read this flag and stop the timer using 
Stop_​PIT.

Figure 3.11 is a sequence diagram that shows the interactions between software and hard-
ware in this approach. It is a vertical timeline that starts at the top. Each hardware or software 
component (called an actor) has its own column. Here, the software components are labeled 
Scheduler and Task_​Flash_​FSM_​Timer and the hardware components are labeled PIT_​TIMER 
and LED.

The arrows in Figure 3.11 show communication between specific actors. For example, 
Scheduler starts Task_​Flash_​FSM_​Timer running. That task then turns on the LEDs to make the 
LED white, and starts the timer (PIT_​TIMER) running.

Time-out

Time-out

Time-out

Reset
ST_GREEN

ST_GREEN_WAIT

ST_BLUE

ST_BLUE_WAIT

ST_RED ST_RED_WAIT

Figure 3.10	 State machine for RGB task with wait states added.
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Turn on LEDs

PIT_Expired? Yes.

PIT_Expired? No.

ST_WHITE
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Turn off LEDs

Turn on LEDs

PIT_Expired? No.

PIT_Expired? Yes.
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Start_PIT

Init_PIT, Start_PIT

Start counting down
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Start counting down

Count reaches 0

Count reaches 0
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:Scheduler :Task_Flash_FSM_Timer :PIT Timer :LED

Figure 3.11	 Sequence diagram showing interactions between the software (scheduler and task) and the 
hardware (timer and LED).
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void Task_​Flash_​FSM_​Timer(void) {
    �  static enum {ST_​WHITE, ST_​WHITE_​WAIT, ST_​BLACK, ST_​BLACK_​WAIT} next_​state = 

ST_​WHITE;
 
      if (g_​flash_​LED == 1) {        //​ Only run task when in flash mode
         switch (next_​state) {
              case ST_​WHITE:
                   Control_​RGB_​LEDs(1, 1, 1);
                   Init_​PIT(0, g_​w_​delay);    
                   Start_​PIT(0);
                   next_​state = ST_​WHITE_​WAIT;
                   break;
              case ST_​WHITE_​WAIT:
                   if (PIT_​Expired(0)) {
                        Stop_​PIT(0);
                        next_​state = ST_​BLACK;
                   }
                   break;
              case ST_​BLACK:
                   Control_​RGB_​LEDs(0, 0, 0);
                   Init_​PIT(0, g_​w_​delay);    
                   Start_​PIT(0);
                   next_​state = ST_​BLACK_​WAIT;
                   break;
              case ST_​BLACK_​WAIT:
                   if (PIT_​Expired(0)) {
                        Stop_​PIT(0);
                        next_​state = ST_​WHITE;
                   }
                   break;
              default:
                   next_​state = ST_​WHITE;
                   break;
         }
      } else {
         next_​state = ST_​WHITE;
      }
}

Listing 3.14  Source code for a Flash task using a finite state machine and a hardware timer.

We will apply this modification to both Task_​Flash_​FSM and Task_​RGB_​FSM, as they both 
use the delay function. The updated task source code for Task_​Flash_​FSM_​Timer appears in 
Listing 3.14. Let’s examine the code in the white state (ST_​WHITE):

•	Turn on all LEDS to make white light
•	Initialize the timer with a time delay (g_​w_​delay)
•	Start the timer
•	Set next_​state to ST_​WHITE_​WAIT
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Now let’s examine the code in the white wait state (ST_​WHITE_​WAIT):

•	Check whether the timer has expired yet
•	If it has not expired, exit without changing next_​state
•	If it has expired, stop the timer and advance next_​state to ST_​BLACK

Notice that the state machine won’t advance past ST_​WHITE_​WAIT until the timer expires. 
The function Task_​Flash_​FSM_​Timer may be called once or one million times, but it won’t 
advance past ST_​WHITE_​WAIT until enough time has passed. This allows different FSMs in 
the program to make progress at different speeds without slowing each other down excessively.

Analysis

Figure  3.12 shows the resulting system behavior. The delays are very small because all calls 
to an FSM function complete very quickly. Because a hardware timer tracks the delay (rather 
than a software function executing on the CPU), even calls to FSMs in a WAIT state will 
return quickly.

Advanced Scheduling Topics

Our scheduling improvements have improved performance, but some issues remain:

•	First, the CPU wastes quite a bit of time trying to run tasks that do not have any work to do. 
Currently it is up to the task to determine whether to run or not. Can we use the scheduler to 
make this decision? And can the scheduler make it easier for us to use the processor efficiently 
(e.g. periodic task execution)?

•	Second, the tasks always run in the same order. Can we change the scheduler to run more time-​
critical tasks before others, improving responsiveness by prioritizing the work?

Time

Switch 1 pressed

R G B

Task_RGB

Switch inputs

Task_Flash

LED output

Task_Read
_Switches

R G G BR R

Figure 3.12	 Response with tasks implemented as finite state machines using timer peripheral for delays.
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•	Third, if an important event occurs just after a long-​running task starts, we will need to wait 
for it to finish, or else restructure the task as an FSM. Is there a different way to reduce this task 
running time which does not require so much code modification?

Addressing these questions fully is beyond the scope of this introductory embedded systems text-
book, but it is good to be aware of them. So we will cover them briefly in the remainder of this 
chapter.

You may wonder about the differences between a scheduler, a kernel, and an operating sys-
tem. A task scheduler grows more complex when we add support to address the issues listed 
above. The result is a kernel, which supplements the scheduler with task-​oriented features, 
such as synchronization, signaling, communication, and time delays. Many embedded systems 
use a kernel to share the processor’s time among multiple tasks. The fundamental role of the 
kernel is to execute the highest priority task that is ready (i.e. is not waiting for any event or 
resource). Such kernels are typically preemptive (described later) so that tasks are respon-
sive without having to be broken into state machines. The kernel also provides support for 
efficient time delays, signaling between tasks, sharing data safely, managing tasks, and other 
useful features.

An operating system enhances the kernel with application-​oriented features, such as a file sys-
tem, a graphical user interface, and networking support. However, there is always a task scheduler 
at the heart.

Waiting

Who determines if a task has no work to do? The task or the scheduler? Earlier we left the ques-
tion up to the task in order to simplify the scheduler. For some systems that is reasonable, but 
systems with tight timing requirements or many tasks will waste quite a bit of time.

For example, the system shown in Figure 3.12 is wasting a tremendous amount of the CPU’s 
time by polling the task frequently to determine if it needs to run.

The program only does useful work when the switch changes or when an LED needs to change, 
as shown in Figure 3.13. We would like a scheduling approach that behaves this way by using an 
event-​driven approach.

kernel
Scheduler with support for task features such as communication, delays, and synchronization

operating system
Kernel with support for application-oriented features such as file systems, networking support, etc.
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In the scheduling approaches we’ve seen so far, there are two possible states for a task:  
running and ready to run. There can only be one running task per processor core,2 but there 
can be many ready tasks. Let’s introduce a new task state: waiting (also called blocking). A task 
in that state is waiting for a particular event to happen: a time delay to expire, a message to be 
received, a resource to be made available, etc. The kernel does not waste any time trying to 
schedule tasks that are waiting. Instead, the kernel only schedules tasks that are ready or running. 
When an event occurs, the kernel checks to see if any tasks are waiting for it. If so, those tasks are 
moved to the ready state and will be able to run.

Compare this with our waiting in the FSM. When we restructured our code, we broke out 
the waiting portions. By using kernel support for waiting, we do not need to restructure the 
code, but instead call a kernel function that will manage the waiting. From the point of view 
of the task, it is just a call to a wait function that does not return until the desired event has 
occurred.

Task Prioritization

Task prioritization can be used in deciding which processing activity to perform next. We 
may decide, for instance, that when tasks A and C are ready to execute, we always run C 
first since it needs a shorter response time. Task A will run after C finishes since it is of lower 
priority.

waiting
A state in which a task is waiting for an event to occur. Also called blocking.

blocking
A state in which a task is waiting for an event to occur. Also called waiting.

	2	 We do not consider hardware multithreading support here, but these scheduling concepts are easily extended and applied for such 
processors.
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Figure 3.13	 Useful work performed by the program.
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void Flasher(void) {
         while (1) {
                  Task_​Read_​Switches();
                  Task_​Flash();
                  Task_​RGB();
         }
}

Listing 3.15  Flasher function acts as a scheduler with fixed task priorities.

Consider the early version of the task scheduler, reproduced here in Listing 3.15. It always runs 
the tasks in the same order:  Task_​Read_​Switches, Task_​Flash, and then Task_​RGB. Consider 
how to minimize the response time when we press the switch. Since we want to start flashing 
the LEDs, we want Task_​Flash to run before Task_​RGB (have a higher priority). If we want to 
minimize the response time when we release the switch, we want the LEDs to follow the RGB 
sequence, so Task_​Flash should run after Task_​RGB (have a lower priority).

Task priorities may be assigned so they are fixed (task A always has the lowest priority) or dynam-
ically (based on some condition that may change at run time). Embedded system kernels typically 
provide only fixed priorities, though some allow a task’s priority to be changed as the system runs.

Task Preemption

The cooperative multitasking approach we have been examining does not switch to running 
a different task until the currently running task yields the processor. This delays the system’s 
response. A preemptive multitasking approach uses task preemption so that an urgent task is not 
delayed by a currently running task of lower urgency. Consider that task A is already running, 
and task C becomes ready to run, perhaps due to an ISR executing and saving some deferred work 
for C. A preemptive scheduler can temporarily halt the processing of task A, run task C, and 
then resume the processing of task A.

The LED flasher with two tasks and an interrupt handler is shown in Figure 3.14. Pressing or 
releasing the switch triggers an interrupt event. The interrupt support hardware forces the CPU to 
preempt the currently running Task_​RGB, execute the code of PORTD_​IRQHandler (the ISR), and 
then resume Task_​RGB where it left off. However, we still have to wait for Task_​RGB to complete.

With task preemption in Figure 3.15, we can use kernel features so that Task_​Flash (not Task_​
RGB) runs after PORTD_​IRQHandler. Once Task_​Flash completes its work and waits, then 
Task_​RGB can run.

task preemption
Scheduling approach in which a task is paused to allow a different task to run. Eventually the first task resumes execution 
where it was paused.

preemptive scheduler
Scheduler which supports task preemption
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Real-​Time Systems

A real-​time system is one in which tasks have deadlines. If the software and hardware are not 
sufficiently responsive, then the task will not complete before its deadline, leading to a system 
failure. Real-​time scheduling analysis gives us the mathematical methods to calculate the worst-​
case response time for each task in such a software system. We can compare these response times 
to our system’s deadlines in order to verify whether the system is schedulable (will always meet its 
deadlines).

If the system is not schedulable, then we have several options to make it schedulable. We 
could change the hardware (use a faster processor) if the customer budget allows it. We could 

real-time system
System which must respond to events before given deadlines

Time

Switch 1 pressed

R G B

Task_RGB

Switch inputs

Task_Flash

LED output R G B

PORTD_
IRQHandler

G R G

Figure 3.15	 An LED flasher with task preemption. Task_​Flash prempts Task_​RGB in the green cycle 
when the switch is pressed.
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Figure 3.14	 An LED flasher with two tasks and an interrupt handler is still delayed by Task_​RGB after 
interrupt.
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improve the application software by speeding up the code or by reducing the amount of pro-
cessing needed. We could also improve the scheduling approach by changing the balance of 
work performed in ISRs versus deferred activities, adding or changing task priorities, or adding 
preemption.

A real-​time kernel (RTK) or a real-​time operating system (RTOS) is designed to make it easier 
to create real-​time systems. Preemptive scheduling is typically used to provide short response 
times. Prioritized task scheduling also reduces response times. The kernel is designed and built to 
execute with consistent and predictable timing, rather than with widely varying behavior. One 
example of an RTK is Keil’s RTX, which is included with the Keil MDK-​ARM integrated devel-
opment environment [1].

Summary

This chapter has presented various approaches to sharing a CPU among multiple software activi-
ties. We began with a starter program with all of the activities mixed together (spaghetti code). 
We then saw how to improve it in several important ways:

•	Modularity is improved by dividing the activities into separate tasks.
•	Responsiveness is improved by allowing preemption of tasks (by interrupts or other tasks), by 

shortening task run-​times using FSMs, and by prioritizing tasks.
•	CPU overhead is reduced by using hardware peripherals and by introducing a task wait state.

Exercises

1.	 Consider the scheduling approach described in the section “Creating and Using Tasks”. See 
Figure 3.4. Assume there is no time taken to switch between tasks, and that the tasks have the 
following execution times:

Task or handler
Execution time when 
in flash mode

Execution time when 
in RGB mode

Task_​Read_​Switches 1 ms 1 ms

Task_​Flash 100 ms 1 ms

Task_​RGB 1 ms 1000 ms

a.	 Describe the sequence of events that leads to maximum delay between pressing the switch 
and seeing the LED flash. Calculate the value of that delay.

b.	 Describe the sequence of events that leads to maximum delay between pressing the switch 
and seeing the LED sequence through RGB colors. Calculate the value of that delay.

c.	 What is the minimum amount of time the switch must be pressed to change the LED flash-
ing pattern?

d.	 Would changing the scheduler to call Task_​RGB before Task_​Flash change the delays in 
(a) and (b)? If so, determine the new delays and explain why they changed.
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2.	 Another developer wants to add two more tasks (Task_​X and Task_​Y) to the system of the 
previous question. Each task can take up to 80 ms to complete.
a.	 When will there be maximum delay between pressing the switch and seeing the LED flash? 

Calculate the value of that delay.
b.	 When will there be maximum delay between releasing the switch and seeing the LED 

sequence through RGB colors? Calculate the value of that delay.
c.	 What is the minimum amount of time the switch must be pressed to change the LED flash-

ing pattern?
3.	 Consider the scheduling approach of the section “Interrupts and Event Triggering”. See 

Figure 3.7. Assume that PORTD_​IRQHandler starts executing as soon as the switch changes 
from pressed to released or from released to pressed. Also assume there is no time taken to switch 
between tasks or the handler, and that the tasks and handler have the following execution times:

Task or handler
Execution time 
when in flash mode

Execution time when in 
RGB mode

PORTD_​IRQ_​Handler 0.01 ms 0.01 ms

Task_​Flash 100 ms 1 ms

Task_​RGB 1 ms 1000 ms

a.	 Describe the sequence of events that leads to maximum delay between pressing the switch 
and seeing the LED flash. Calculate the value of that delay.

b.	 Describe the sequence of events that leads to maximum delay between pressing the switch 
and seeing the LED sequence through RGB colors. Calculate the value of that delay.

c.	 What is the minimum amount of time the switch must be pressed to change the LED flash-
ing pattern?

4.	 Consider the scheduling approach of the section “Reducing Task Completion Times with 
Finite State Machines”. See Figure  3.9. Assume there is no time taken to switch between 
tasks, and that the tasks have the following execution times:

Task
Execution time 
when in flash mode

Execution time when 
in RGB mode

Task_​Read_​Switches 1 ms 1 ms

Task_​Flash 34 ms 1 ms

Task_​RGB 1 ms 334 ms

a.	 Describe the sequence of events that leads to maximum delay between pressing the switch 
and seeing the LED flash. Calculate the value of that delay.

b.	 Describe the sequence of events that leads to maximum delay between pressing the switch 
and seeing the LED sequence through RGB colors. Calculate the value of that delay.

c.	 What is the minimum amount of time the switch must be pressed to change the LED flash-
ing pattern?

5.	 Consider using the approaches from both the previous two problems. Use an interrupt to reduce 
switch detection latency (from section “Interrupts and Event Triggering”) and FSMs to reduce task  
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execution time (from section “Reducing Task Completion Times with Finite State Machines”). 
Assume that PORTD_​IRQHandler starts executing as soon as the switch changes from pressed 
to released or from released to pressed. Also assume there is no time taken to switch between 
tasks or the handler and that the tasks and the handler have the following execution times:

Task or handler
Execution time when 
in flash mode

Execution time when in RGB 
mode

PORTD_​IRQ_​Handler 0.01 ms 0.01 ms

Task_​Flash 34 ms 1 ms

Task_​RGB 1 ms 334 ms

a.	 Describe the sequence of events that leads to maximum delay between pressing the switch 
and seeing the LED flash. Calculate the value of that delay.

b.	 Describe the sequence of events that leads to maximum delay between pressing the switch 
and seeing the LED sequence through RGB colors. Calculate the value of that delay.

c.	 What is the mlinimum amount of time the switch must be pressed to change the LED 
flashing pattern?

6.	 Finally consider the approach of the section “Task Preemption”. Assume that the IRQ handler 
can tell the scheduler to change which task to run, and that tasks can preempt each other. See 
Figure 3.15. Assume that PORTD_​IRQHandler starts executing as soon as the switch changes 
from pressed to released or from released to pressed. Also assume there is no time taken to switch 
between tasks or the handler and that the tasks and the handler have the following execution times:

Task or handler
Execution time 
when in flash mode

Execution time when 
in RGB mode

PORTD_​IRQ_​Handler 0.01 ms 0.01 ms

Task_​Flash 100 ms 1 ms

Task_​RGB 1 ms 1000 ms

a.	 Describe the sequence of events that leads to maximum delay between pressing the switch 
and seeing the LED flash. Calculate the value of that delay.

b.	 Describe the sequence of events that leads to maximum delay between pressing the switch 
and seeing the LED sequence through RGB colors. Calculate the value of that delay.

c.	 What is the minimum amount of time the switch must be pressed to change the LED flash-
ing pattern?
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Overview

In this chapter we examine the processor core, which runs a program by executing its instruc-
tions. We learn about the organization of the core, how instructions are executed, how data can 
be stored and accessed in registers and memory, and what types of operations the processor can 
perform.

We then examine exceptions and interrupts, which allow a program to respond quickly to 
events while maintaining a simple software structure. We examine how the processor responds to 
exceptions and interrupts and then study the hardware support circuits. Finally, we discuss how 
to write software to configure and use interrupts.

CPU Core

Concepts

Figure 4.1 shows an overview of the components within a microcontroller. These include a pro-
cessor core (for executing a program), memory (for storing data and instructions), and supporting 
peripheral components that add functionality or improve performance. In this chapter we study 
the CPU core, which can be found in the upper left corner in Figure 4.1.
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Figure 4.1   �Overview of components within an NXP Kinetis KL25Z microcontroller.
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The processor core executes the instructions that make up a program. Figure 4.2 shows the 
components of a simple CPU core from the instruction-​processing point of view. Each instruction 
specifies an operation to perform and which operands to use for that operation.

instruction
Command for processor to execute. Consists of an operation and zero or more operands.

operation
Part of an instruction: specifies what work to do

operand
Part of an instruction: parameter used by operation

•	 The program’s instructions are stored in program memory (at the top of the diagram). A register 
called the program counter (PC) specifies the location (address) of the next instruction in that 
memory to execute.

•	 The register file holds temporary data values before and after the arithmetic/​logic unit (ALU) 
processes them. It is easy to access but is small, holding only a few items.

•	 The heart of the CPU is the ALU. It performs the actual data processing operations such 
as addition, subtraction, logic operations (and, or, etc.), comparison, and so on. The ALU 
gets its operands from the register file (described next) or from within the instruction  
itself.
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Instruction
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Counter

Source 1 Source 2 

Result

Register
File

Instruction
Decoder

and
Sequencer

Data
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Figure 4.2 � Simplified structure of a CPU core.
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•	 The data memory provides longer-​term data storage. It is much larger, holding thousands, mil-
lions or more data items. However, it is slower and more complex to access.

•	 Control logic decodes the instruction into various control and data signal sequences that are 
sent to other components of the CPU to control their operation.

register
Hardware circuit which can store a data value

register file
Holds CPU’s general purpose registers

Figure 4.2 highlights three different types of information flowing in the CPU as it executes a 
program:

•	 Register and ALU data flow, identified with single lines.
•	 Memory addresses and data, identified with double lines.
•	 Control and selection signals, identified with dotted lines.

Instruction processing follows this sequence:

•	 The CPU reads an instruction from the program memory location specified by the program 
counter.

•	 The control logic decodes the instruction and uses the resulting information to control other 
subsystems in the CPU core. This information specifies:

○○ Which registers in the register file to read for the instruction’s source operands
○○ How to generate any other source operands
○○ Whether the ALU will perform an operation (and which one), or whether memory will be 

accessed
○○ Which register in the register file will be written with the result
○○ How to update the PC

Programs normally follow a sequential instruction execution, by advancing to the instruction 
located immediately after the current one. However, a control-​flow instruction (e.g. branch, sub-
routine call, return) or interrupt request will make the flow of control jump to a different location, 
enabling loops, condition tests, subroutine calls, and other behaviors.

Some CPU cores speed up programs by improving this execution sequence. For example, 
pipelining involves starting to work on the next instruction before the current instruction has 
completed.
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Architecture

The architecture defines several aspects of a processor:

•	 Programmer’s model: operating modes, registers, memory map
•	 Instruction set architecture: instructions, addressing modes, data type
•	 Exception model: interrupt handling
•	 Debug architecture: debug features.

The Cortex-​M0+ processors implement the ARMv6-​M architecture profile [1], which is a 
specialized and smaller version of the more general ARMv6 architecture profile. For further 
information beyond what is presented here, please refer to the existing texts and manuals [2], 
[3], [4].

In the ARM programming model, only the data located in registers can be processed. Data in 
memory cannot be processed directly. Instead it must be loaded into registers before processing 
and perhaps stored back to memory afterward; hence it is called load/​store architecture. This type 
of architecture simplifies the design of hardware, generally increasing speed and reducing power 
consumption.

The native data types for a CPU core are directly supported by the processor’s hardware 
and execute quickly. The ARMv6-​M native data types are signed and unsigned 32-​bit values. 
Operations with other data types can be emulated by multiple software instructions, potentially 
taking more time.

native data type
Primary data type used by ALU and registers. 32-​bit integer for ARM Cortex-​M CPUs.

Registers

The ARM programmer’s model features multiple 32-​bit registers. Some of them are for general 
use, whereas others have specific purposes and unique characteristics.

•	 Registers R0 through R12 are general purpose registers for data processing.
•	 Register R13 is called the stack pointer (SP), and is used to manage a data storage structure 

called the stack. SP refers to one of two possible stack pointers, the main stack pointer (MSP) 
or the process stack pointer (PSP). Simple applications typically use the only MSP, although a 
kernel or operating system may use both.

•	 Register R14 is called the Link Register, and it holds the return address when a Branch and 
Link instruction is used.
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•	 Register R15 is called the program counter (PC), and it holds the address of the next instruc-
tion to execute in the program.

There are three special registers:

•	 The program status register (PSR) is one register but has three different views, as shown in 
Figure 4.4. The application PSR (APSR) view shows the condition code flag bits (Negative, 
Zero, Carry, and Overflow), which are set by the instructions based on their result. The 
interrupt PSR (IPSR) view holds the exception number of the currently executing excep-
tion handler. The execution PSR (EPSR) view indicates whether the CPU is operating in 
Thumb mode.

APSR

IPSR

EPSR Reserved

N Z C V

31 30 29 28 27 25 24 23 6 5 0

Reserved

Reserved

Reserved Exception number

T

Figure 4.4 � Program status register.

General purpose registers

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12
SP (R13)

LR (R14)

PC (R15)

PSR
PRIMASK

CONTROL

Banked stack pointers

PSP MSP

Program Status Register
Interrupt mask register

Control Register
Special registers

Low registers

High registers

Active Stack Pointer
Link Register

Program Counter

Figure 4.3 � Registers in ARM programmer’s model.
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•	 The PRIMASK register will cause the CPU to ignore some types of exceptions when it is set to 
one. We will discuss this further in the section on interrupts.

•	 The CONTROL register has one field (SPSEL) that determines which stack pointer is used if 
the processor is in Thread mode, and a field that determines if the processor should be running 
with privileged or unprivileged level when in Thread mode. Support for the unprivileged level 
is optional in the Cortex-​M0+ processor and might not be available in some microcontroller 
products.

Memory

Memory Map
The ARMv6-​M architecture has a 32-​bit address space, allowing up to 232 locations to be addressed. 
An address specifies a particular byte, so the memory is called byte-​addressable. This address space 
is divided into various regions for different uses, as shown in Figure 4.5. There is space for code 
memory, on-​chip SRAM for storing data, on-​chip peripheral device control and status registers, 
off-​chip RAM for storing data, off-​chip peripheral device control and status registers, a private bus 
with fast access to peripherals, and space for system control and status registers.

byte-​addressable
Memory in which each address identifies a single byte

Code

SRAM

Peripheral

External RAM

External Device

Private Peripheral Bus

System

0x0000 0000
0x1FFF FFFF
0x2000 0000
0x3FFF FFFF
0x4000 0000
0x5FFF FFFF

0xE000 0000
0xE00F FFFF
0xE010 0000
0xFFFF FFFF

0x6000 0000

0x9FFF FFFF
0xA000 0000

0xDFFF FFFF

Figure 4.5 � Memory map for Cortex-​M processors.

condition code flag
Indicates whether result of instruction is negative (N) or zero (Z), or whether instruction resulted in carry (C) or 
overflow (V)
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In the KL25Z128VLK4, 128 KB of Flash ROM is located in the bottom of the code memory at 
addresses 0x0000 0000 to 0x0001 FFFF; 16 KB of read/​write memory (called SRAM, static RAM) 
is located straddling the Code and SRAM regions, from 0x1FFF F000 to 0x1FFF FFFF (code 
region) and 0x2000 0000 to 0x2000 2FFF (SRAM region).

Endianness
Endianness describes the order in which multi-​byte values are stored in memory at a range of 
addresses. For example, a four-​byte value (a word) could be stored at addresses A through A+3. 
For little-​endian systems, the least-​significant byte is stored at the lowest address, as in Figure 4.7. 
For big-​endian systems, the most-​significant byte is stored at the lowest address, as in Figure 4.8.

endianness
Property which describes order of bytes in multi-​byte structures stored in memory

little-​endian
Describes byte ordering convention in which least-​significant byte is stored first in memory

least-​significant
Having the smallest place value. The least-significant byte of a two-​byte value represents values of 0 to 255.

128 KB Flash (Code region)
0x0000 0000
0x0001 FFFF

0x1FFF F000
0x1FFF FFFF
0x2000 0000
0x2000 2FFF

4KB SRAM (Code region)

12 KB SRAM (SRAM region)

Figure 4.6 � Flash ROM and SRAM memories in KL25Z128VLK4 MCU.

B0

B1

B2

B3

AAddress Isbyte

31 23

B3 B2 B1 B0

15 724 16 8 0

msbyte

A+1

A+2

A+3

Memory Register

7 0

Figure 4.7 � With little-​endian storage, lowest memory address holds least-​significant byte.
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B0

B1

B2

B3

AAddress

Isbyte

31 23

B0 B1 B2 B3

15 724 16 8 0

msbyte

A+1

A+2

A+3

Memory Register

7 0

Figure 4.8 � With big-​endian storage, lowest memory address holds most-​significant byte.

big-endian
Describes byte ordering convention in which most-​significant byte is stored first in memory

most-​significant
Having the greatest place value. The most-significant byte of a two-​byte value represents values of 0 to 65,280 which are 
multiples of 256.

For ARMv6-​M systems, instructions are always little-​endian. Data can be of either endianness, 
as determined by the CPU implementation. Kinetis microcontrollers built with Cortex-​M proces-
sors are little-​endian for data (and instructions, of course).

Stack
A stack is a data structure that helps programs reuse memory safely. Rather than permanently allo-
cate a memory location for a temporary data value, a stack allows the program to allocate a loca-
tion, use it, and then free it when done, allowing for later reuse of that location for other purposes.

Adding data to a stack is called pushing data onto the stack, whereas removing data is called 
popping data. Stacks use a “last-​in, first-​out” data organization. If item X and then item Y are 
pushed onto the stack, then the first pop will return Y, and the second pop will return X.

The SP (R13) points to the last item on the stack, not the first free location. Pushing data 
decreases the SP value by the number of bytes of data added. Popping data increases SP value by 
the number of bytes removed. This means that the stack grows toward smaller addresses.

stack
Last-​in, first-​out data structure. Data items are removed (popped) in the opposite order they were inserted (pushed).

push
Instruction which writes a data item next free stack location in memory and updates the stack pointer

pop
Instruction which reads a data item from the top of the stack (last used location) in memory and updates the stack pointer
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Let’s walk through an example of stack use. We begin with the item D on the top of the stack 
at address A, as shown in Figure 4.9. We push a data item X (Figure 4.10), and then push another 
data item Y (Figure 4.11). The first time we pop an item off the stack, we get Y (Figure 4.12) and 
the next pop results give the value X (Figure 4.13). The push or pop operation adjusts the stack 
pointer SP to point to the top item of the stack.

For the ARM Cortex-​M, all pushes and pops use 32-​bit data items; no other size is possible. 
Since all possible stack pointer values are multiples of four, the hardware is designed so that the 
two least significant bits of the stack pointer are always zeros.

Memory Address Contents

0x2000 0000 Free space

0x2000 0004 Free space

0x2000 0008 Free space

SP after pushing data onto stack→ 0x2000 000c X

0x2000 0010 D (existing data)

Figure 4.10 � Stack after pushing item X. SP now points to X, the new top-​of-​stack.

Memory Address Contents

0x2000 0000 Free space

0x2000 0004 Free space

SP after pushing data onto stack→ 0x2000 0008 Y

0x2000 000c X

0x2000 0010 D (existing data)

Figure 4.11 � Stack after pushing item Y. SP now points to Y.

Memory Address Contents

0x2000 0000 Free space

0x2000 0004 Free space

0x2000 0008 Free space

SP after popping data from stack→ 0x2000 000c X

0x2000 0010 D (Existing data)

Figure 4.12 � Stack after popping one item from stack. Popped value is Y. SP now points to X.

Memory Address Contents

0x2000 0000 Free space

0x2000 0004 Free space

0x2000 0008 Free space

0x2000 000c Free space

SP before pushing data onto stack→ 0x2000 0010 D (existing data)

Figure 4.9 � Initially stack has one data item (D). SP points to D, the top-​of-​stack.
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Instructions

9800              LDR      r0,[sp,#0]
1900              ADDS     r0,r0,r4
9000              STR      r0,[sp,#0]

Listing 4.1 � Instructions in machine language (first column) and assembly language (remaining columns).

An instruction must specify which operation to perform, and possibly data and parameters for the 
operation. The instruction may be written in machine language or assembly language.

machine language
Code in which each instruction is represented as a numerical value. Processed directly by CPU.

assembly language
Human-​readable representation of machine code

The machine language form is a number that is stored in program memory and which the CPU 
can decode quickly and easily. For example, in Listing 4.1, we see three instructions in machine 
language: 9800, 1900, and 9000.

Assembly language is a text form that is more easily understood than machine language, which 
is tedious to read, write, and edit. An assembly language instruction uses mnemonics to specify 
the operation and any operands. The first operand usually specifies the destination of the opera-
tion, which will be overwritten with the result. The following operands usually specify the sources 
of the input values. For some instructions, the destination or source is implied by the instruction 
itself. A software tool called an assembler translates the assembly language code into machine 
language code for the CPU to execute.

assembler
Software tool which translates assembly language code into machine code

Listing 4.1 also shows the assembly language forms of the same three instructions:

•	 LDR r0, [sp, #0] loads register r0 from memory starting at address sp+0.

Memory Address Contents

0x2000 0000 Free space

0x2000 0004 Free space

0x2000 0008 Free space

0x2000 000c Free space

SP after popping data from stack→ 0x2000 0010 D (Existing data)

Figure 4.13 � Stack after popping another item from stack. Popped value is X. SP points to D again.
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•	 ADDS r0, r0, r4 adds the contents of r0 and r4, placing the results in r0.
•	 STR r0, [sp, #0] saves the contents of r0 to memory starting at address sp+0.

Operands may be located in a general-​purpose register (R0 through R12), in the instruction word 
itself, in a condition code flag or in memory. Most instructions can access operands only in regis-
ters, the instruction word, or condition code flags. Some instructions (load, store, push, and pop) 
are able to access operands in memory.

Table 4.1 provides an overview of the different instructions available for the Cortex-​M0+. 
Some of the instructions have two versions, one that updates the condition code flags in the 
APSR (indicated with an S suffix after the instruction mnemonic) and one that does not (no S 
suffix). Full details of the instruction set are presented in the Cortex-​M0+ User Guide [3].

Data Movement Instructions
The MOV and MOVS instructions move data to a general-​purpose register and have several 
forms:

•	 MOV R3, R5 copies the data from register R5 into register R3.
•	 MOV R2, #151 copies the value 151 into register R2. The value to be moved is called an 

immediate value because it is located in the instruction itself, in an 8-​bit field. Unsigned  
values from 0 to 255 can be loaded into registers in this way. Larger values must be loaded from 
memory using the LDR instruction, described later.

immediate value
Data value which is stored as part of a machine instruction

Table 4.1 Summary of Cortex-​M0+ Instructions

Category Instruction type Instruction mnemonic

Data movement Move MOV, MOVS, MRS, MSR

Data processing Math ADD, ADDS, ADCS, ADR, MULS, RSBS, SBCS, SUB, SUBS

Logic ANDS, EORS, ORRS, BICS, MVNS, TST

Compare CMP, CMN, TST

Shift and rotate ASRS, LSLS, LSRS, RORS

Extend SXTB, SXTH, UXTB, UXTH

Reverse REV, REV16, REVSH

Memory access Load LDR, LDRB, LDRH, LDRSH, LDRSB, LDM

Store STR, STRB, STRH, STM

Stack PUSH, POP

Control flow Branch B, BL, BX, BLX, Bcc

Miscellaneous BKPT, CPSID, CPSIE, WFE, WFI, SVC, DMB, DSB, ISB, SEV, NOP
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The special registers (such as CONTROL, PRIMASK, xPSR) are accessed using MSR and MRS 
instructions. MRS moves the data from a special register into a general-​purpose register, whereas 
MSR does the opposite.

Data Processing Instructions
Data processing instructions include both math and logic operations. These are performed on one 
or more 32-​bit data values, typically two registers or one register and an immediate constant.

Math operations include addition (with and without carry), subtraction (with and without bor-
row), subtraction with reversed operands, and multiplication:

•	 ADDS R0, R1, R2 adds the contents of R1 and R2, writing the result to R0 and updating the 
condition code flags in the APSR.

Logic operations include bitwise and, bitwise and with complement, exclusive or complement, 
and test.

•	 ANDS R4, R3, R7 computes the bitwise and of registers R3 and R7, writing the result to R4 
and updating the condition code flags in the APSR.

Compare instructions calculate the difference between two operands, set the condition code flags 
accordingly, but discard the calculated difference. A test instruction performs a logical AND on 
two operands and then sets the condition code flags. Condition code flags are explained in depth 
in the instruction set reference [3].

•	 CMP R3, R5 computes R3 –​ R5 and sets the flags according to the difference. For example, if 
R3 holds 61 and R5 holds 29, then the comparison results in a value of 61–​29 = 32. This will 
clear all flags: N, Z, C, and V, as the result is not negative, not zero, no carry occurred, and no 
overflow occurred.

Shift and rotate instructions shift a word left or right by the specified number of bits. Both logical 
and arithmetic operations are supported.

•	 LSRS R1, #1 shifts register R1 to the right by one bit position. Because this is a logical shift, the 
MSB is loaded with zero. Bit 0 is shifted into the carry flag.

Extend instructions convert an 8-​ or 16-​bit value to fill a 32-​bit register. The upper bits can be 
filled in one of two ways, depending on whether the original value is signed or unsigned. An 
unsigned extend instruction (UXTB or UXTH) will fill the upper bits with zeros, preserving 
the value of unsigned data. A signed extend instruction (SXTB or SXTH) will fill the upper 
bits with the most significant bit of the original value, preserving the value of the signed  
data.

unsigned
Numbering system which is able to represent positive values and zero
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signed
Numbering system which is able to represent positive and negative values and zero

Reverse instructions can reverse the byte order in a 32-​bit word or two 16-​bit half-​words, pro-
viding conversion between little-​endian and big-​endian data.

Memory Access Instructions
Recall that in the ARM programming model, data in memory must be loaded into registers before 
it can be processed, and then may need to be stored back into memory.

Memory Addressing
Memory accesses use offset addressing, in which a base register Rn and an offset are added together 
to create the actual address for the memory access. The offset can be another register or an imme-
diate constant value (which is stored in the instruction word). The base register is not modified 
by the address calculation.

The assembly code syntax for addressing memory is a bracketed expression. For example:

•	 [R0] indicates the memory location starting at the address which is the sum of the values in R0 
and R3. If R0 has a value of 4000, then this indicates the memory value starting at address 4000.

•	 [R0, #22] indicates the memory location starting at the address which is the sum of the val-
ues in R0 and R3. If R0 has a value of 4000, then this indicates the memory value starting at 
address 4022.

•	 [R0, R3] indicates the memory location starting at the address in register R0. If R0 has a 
value of 4000 and R3 has a value of –​80, then this indicates the memory value starting at 
address 3920.

Load/​Store Instructions
The LDR instruction loads a register with a 32-​bit word from the four memory locations starting at 
the source address. The STR instruction stores the 32-​bit contents of a register to the four memory 
locations starting at the destination address.

•	 LDR R0, [R4, #8] will load register R0 with the contents of the memory word (4 bytes) starting 
at location R4 + 8.

•	 STR R1, [R4, R5] will store register R1 to the memory word (4 bytes) starting at location 
R4 + R5.

Data smaller than 32 bits can be loaded or stored from memory as well. Byte (8 bits) and half-​word 
(16 bits) loads and stores are supported. The STRB operation stores the least-​significant byte of a 
register at the destination memory address, whereas STRH stores the least-​significant half-​word 
in the two bytes starting at the destination address.

Loads are more complex because an 8-​ or 16-​bit value from memory does not completely fill a 
32-​bit register. This is similar to the signed and unsigned extension instructions described earlier. 
A load register unsigned instruction (LDRB or LDRH) will fill the upper bits with zeros, preserv-
ing the value of the unsigned data. A load register signed instruction (LDRSB or LDRSH) will fill 
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the upper bits with the most significant bit of the value loaded from memory, preserving the value 
of signed data.

The ARMv6-​M architecture does not support unaligned data accesses to memory. When access-
ing a word (which is four bytes) in memory, the starting address must be a multiple of four. When 
accessing a half-​word (two bytes), the starting address must be a multiple of two.

The instruction set also offers load/​store multiple instructions to reduce the amount of code and 
time needed by the program. The LDM operation will load the registers specified in an operand 
list from memory starting at the given address. STM will store multiple registers to memory start-
ing at the given address.

Stack Instructions
The ARM ISA supports a stack in memory to simplify subroutine calls and returns. The SP regis-
ter points to the last data item on the stack.

The PUSH operation pushes (writes) selected registers onto the stack and updates the stack 
pointer. Source registers R0 through R7 and the link register (LR) can be specified in the instruc-
tion. With each register pushed to memory, the CPU decrements the stack pointer by four bytes. 
Registers are always pushed in the same order, regardless of the operand ordering.

•	 PUSH {R0, R5–​R7} will push registers R0, R5, R6, and R7 onto the stack, and subtract 16 
from SP.

The POP operation pops (reads) selected registers from the stack and updates the stack pointer. 
Destination registers R0 through R7 and the PC can be specified in the instruction. With each 
register popped from memory, the CPU increments the stack pointer by four bytes. Registers 
are always pushed in the same order (which is opposite to the push order), regardless of the 
operand ordering.

•	 POP {R2, R4} will load registers R2 and R4 from the stack and add 8 to SP.

Popping a value into the PC will change the program’s flow of control. This can be used to make 
the CPU return from a subroutine to the calling routine, which will be discussed later.

Control Flow Instructons
Control flow instructions allow programs to repeat code in a loop or execute a selected section of 
the code based on a conditional test. This is done by changing the PC to a different value.

An unconditional branch always transfers program execution to the specified destination 
address.

•	 B Target_​label will cause the program to start executing code at (branch to) the program loca-
tion called Target_​label.

A conditional branch will transfer program execution to the specified destination address if a 
given condition is true. The operation consists of a B followed by a condition code suffix (e.g. 
BEQ, BNE). This suffix specifies which particular combination of the condition code flags (N, Z, 
C, V) to evaluate. The conditional branch instruction executes if the condition code flags match 
the specified condition. Figure 4.14 shows the meanings of the different condition code suffixes.
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The condition suffixes correspond to the flag settings after a compare instruction has been 
executed. Earlier we presented the instruction CMP R3, R5. If R3 holds 61 and R5 holds 29, then 
the comparison results in a value of 61–​29 = 32. This will clear the flags N, Z, V, and C. Let’s see 
how different types of conditional branch would behave:

•	 Branch if equal: BEQ Target_​label will not branch to the target, since Z is not one. This is cor-
rect; 61 is not equal to 29.

•	 Branch if not equal: BNE Target_​label will branch to the target, since Z is zero. This is correct; 
61 is not equal to 29.

•	 Branch if greater than: BGT Target_​label will branch to the target, since Z is zero and both N 
and V have the same value (zero in this case). This is correct; 61 is greater than 29.

•	 Branch if greater than or equal: BGE Target_​label will branch to the target, since both N and V 
have the same value (zero in this case). This is correct; 61 is greater than or equal to 29.

•	 Branch if less than: BLT Target_​label will not branch to the target, since N and V do not have 
different values. This is correct; 61 is not less than 29.

Note that the conditional branch can be performed after any instruction, not just a compare. It 
will evaluate the current values of the condition code flags. Remember that some instructions do 
not update the condition code flags.

EQ Z = 1 Equal, last flag setting result was zero.

NE Z = 0 Not equal, last flag setting result was non-zero.

CS or HS C = 1 Higher or same, unsigned.

CC or L0 C = 0 Lower, unsigned.

MI N = 1 Negative.

PL N = 0 Positive or zero.

VS V = 1 Overflow.

VC V = 0 No overflow.

HI C = 1 and Z = 0 Higher, unsigned.

LS C = 0 or Z = 1 Lower or same, unsigned.

GE N = V Greater than or equal, signed.

LT N ! =  V Less than, signed.

GT Z = 0 and N = V Greater than, signed.

LE Z = 1 or N != V Less than or equal, signed.

AL Can have any value Always. This is the default when no suffix is specified.

Suffix Flags Meaning

Figure 4.14 � Condition code suffixes indicate which flags to test [3].
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Another useful control flow concept is the subroutine. Multiple functions may need to perform 
similar work. Rather than duplicate the instructions for that work in each function, the instruc-
tions may be placed into a subroutine that may be called by different functions as needed. Only 
one version of the instructions needs to be stored (reducing code size) and maintained (reducing 
development time). Software developers use subroutines to create building blocks, enabling them 
to think at a higher level when developing a system.

When a function calls the subroutine, the subroutine executes, and then the calling func-
tion resumes execution at the instruction following the subroutine call. Subroutine calls are 
performed using a branch and link (BL) or a branch and link with exchange (BLX). These 
are similar to the unconditional branch (B) with one major difference. When a function 
calls a subroutine, it expects to resume execution after the subroutine completes. The return 
address indicates the location of the next instruction in that function to execute after the 
subroutine completes. The return address is stored in the LR when a BL or BLX instruction 
is executed.

return address
Address of next instruction to execute after completing a subroutine

•	 BL Subroutine1 will call Subroutine1 and save the return address in the link register.
•	 BLX R0 will call the code with the address specified by R0 and save the return address in the 

link register. R0 needs to have been loaded already with the address of the subroutine.

Returning from the subroutine requires copying the return address to the program counter. When 
LR holds the return address, this can be done with BX LR. If this subroutine (Sub_​1) may call 
another subroutine (Sub_​2), then Sub_​1 will save the LR onto the stack before calling Sub_​2. 
Sub_​1 returns by popping the saved LR value from the stack into the PC using the POP {PC} 
instruction.

Miscellaneous Instructions
The CPSID and CPSIE instructions are used to control the PRIMASK register, which deter-
mines whether the CPU responds to interrupts and certain other exceptions. CPSIE enables the 
response, whereas CPSID disables the response.

NOP is an instruction that does nothing (no operation). It can be used to align instructions in 
memory or delay program execution.

There are additional instructions that support debugging, exceptions, sleep modes, complex 
memory systems, and signaling, but we do not discuss them here.

Operating Behaviors

A CPU may have several operating modes with different capabilities to provide better perfor-
mance, more safety, or additional features.
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Thread and Handler Modes
The processor normally runs in Thread mode, but enters Handler mode when servicing excep-
tions and interrupts. The Thread mode simplifies the creation of multitasking systems. Thread and 
Handler modes differ in stack pointer use, which is described in the section “Handler Mode and 
Stack Pointers” below.

Instruction Execution versus Debugging
Normally the CPU runs non-stop, executing a program instruction by instruction unless it is in sleep 
mode or halted. However, there is a debug state in which the CPU does not execute instructions, but 
is instead controlled by a debugger circuit. Because this debugger hardware has full access to registers 
and memory, the target program does not need to be modified, simplifying the development tools.

Thumb Instructions

The full ARM instruction set uses 32 bits to represent each instruction, but this makes programs 
larger and raises costs, which are often crucial for embedded systems. The ARMv6-​M profile 
only supports the Thumb instruction set, a subset of the full ARM instruction set in which most 
instructions are represented as 16-​bit half-​words. This reduces program memory requirements sig-
nificantly and usually allows instructions to be fetched faster. The main limitation of the 16-​bit 
instruction is that there are fewer bits available to represent the operation and operands. As a 
result, some 32-​bit ARM instructions and advanced features are not available. For example, most 
16-​bit Thumb instructions can access only registers R0 through R7, but not R8 through R13. As 
a result, a program using 16-​bit Thumb instructions may require more instructions (and likely 
execution cycles), but it will still be much smaller than a program with 32-​bit ARM instructions.

Exceptions and Interrupts

Exceptions and interrupts are critical tools for making an embedded system responsive while sup-
porting concurrent operation of hardware and software. In the ARM programmer’s model, inter-
rupts are a type of exception.

Events such as hardware signals or anomalous program conditions can trigger exceptions. A periph-
eral or external device sends a hardware signal to the exception controller hardware to indicate that 
an event has occurred. The processor then services (handles) the exception with these steps:

•	 Pauses the program.
•	 Saves context information, such as registers and which instruction to execute next in the 

current program.
•	 Determines which handler (also called a service routine) to run. Each type of exception or 

interrupt can have a separate handler.
•	 Runs the code for the handler.
•	 Restores the context information that was saved previously. The processor then resumes 

executing the current program where it left off.

The CPU performs most of this work automatically in hardware, making the system more respon-
sive. The only work performed in software is running the handler.
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Exceptions provide efficient event-​based processing, unlike polling that can waste many CPU 
cycles. Exceptions provide a quick response to events regardless of program complexity, location, 
or processor state. They enable many multitasking embedded systems to be responsive without 
needing to use a task scheduler or kernel.

Most interrupts and exceptions are asynchronous, meaning they can occur almost anywhere in 
the program. Note that parts of the program may disable interrupts temporarily, which will keep the 
ISR from running until after interrupts are enabled. Although there are methods to trigger an inter-
rupt or an exception in software, we will not cover them here.

asynchronous
Activities which are not synchronized with each other, or a protocol which does not send clocking information

CPU Exception Handling Behavior

Handler Mode and Stack Pointers

The CPU can operate in one of two modes. It normally operates in Thread mode, but switches to 
Handler mode when performing exception processing. The mode determines which stack pointer 
(MSP or PSP) is used.

•	 When the CPU is in the Handler mode, SP refers to the MSP.
•	 When the CPU is in Thread mode, SP can refer to either MSP or PSP. The special CPU reg-

ister called CONTROL has a flag field called SPSEL that selects which stack pointer to use. If 
SPSEL is zero, SP refers to the main stack pointer. This is the value after the CPU is reset. If 
SPSEL is one, SP refers to the process stack pointer.

In systems with a kernel or operating system, threads will use the PSP and the OS, and exception 
handlers will use the MSP. In systems without such support, only the MSP is used.

Thread
Mode.

MSP or PSP

Handler
Mode
MSP

Reset

Starting
Exception
Processing

Exception
Processing
Completed

Figure 4.15 � CPU operating mode changes when handling exceptions and interrupts.
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Entering a Handler

The CPU performs the following steps in hardware in order when an enabled exception is 
requested. This takes fifteen cycles (unless memory is slow enough to require wait states).

1.	 Complete executing the current instruction; otherwise it will take many cycles to complete. 
Such an instruction (LDM, STM, PUSH, POP, and MULS) would delay the exception han-
dling significantly. These instructions are abandoned to allow prompt exception handling, and 
then restarted after the exception handling completes.

2.	 Push part of the processor’s context onto the current stack (either MSP or PSP). Eight 32-​bit 
registers are pushed: the program status register (xPSR), the program counter (the return address), 
the LR (or R14), R12, R3, R2, R1, and R0. Recall that the stack grows toward smaller addresses.

	 Figure 4.16 shows how critical processor registers that hold execution context for the inter-
rupted code are stored on the stack after performing these steps.

3.	 Switch the processor to Handler mode and start using MSP.
4.	 Load the PC with the address of exception handler from the vector table, based on the type of 

exception. We will examine this shortly.
5.	 Load LR with EXC_​RETURN code to select which mode and stack to use after completing 

the exception processing. The codes are listed in Table 4.2.
6.	 Load the IPSR with the number of the exception being processed. For an IRQ, the exception 

number is 16 + the IRQ number.

The CPU can now start executing the code of exception handler.

Memory Address Contents

0x2000 0ffc Free space

SP upon entering exception handler → 0x2000 1000 Saved R0

0x2000 1004 Saved R1

0x2000 1008 Saved R2

0x2000 100c Saved R3

0x2000 1010 Saved R12

0x2000 1014 Saved LR

0x2000 1018 Saved PC

0x2000 101c Saved xPSR

SP before entering exception handler → 0x2000 1020 Data

Figure 4.16 � Stack changes upon preparing to enter an exception handler.

Table 4.2 Descriptions of Exception Return Codes

EXC_​RETURN Code Return stack Description

0xFFFF_​FFF1 0 (MSP) Return to Handler mode with MSP

0xFFFF_​FFF9 0 (MSP) Return to Thread mode with MSP

0xFFFF_​FFFD 1 (PSP) Return to Thread mode with PSP
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Exiting a Handler

The CPU performs these steps in order when exiting an exception handler. The first step is a soft-
ware instruction, while the remainder are hardware operations.

1.	 Execute an instruction that triggers exception return processing. There is no “return from 
interrupt” instruction for ARMv6-​M processors. Instead, we use an instruction to update the 
PC with a special exception return code (EXC_​RETURN) that triggers the CPU’s exception 
processing hardware. One option is a branch indirect to the link register (BX LR). Another 
option is to pop the exception return code from the stack into the PC.

2.	 On the basis of the exception return code, the CPU selects either the main or process stack 
pointer, and also selects either Handler or Thread mode.

3.	 The CPU restores the context from that stack, as shown in Figure 4.17. This consists of the 
registers that were saved previously: the xPSR, the program counter (the return address), the 
LR (or R14), R12, R3, R2, R1, and R0.

4.	 The CPU has now restored the processor context and will resume execution of code at the 
address that has been restored to the PC.

Hardware for Interrupts and Exceptions

Hardware Overview

Figure 4.18 shows an overview of the hardware involved in recognizing interrupts. At the left are 
peripherals that can generate interrupt requests. These peripherals contain control registers to 
configure the peripheral’s interrupt generation behavior.

In the center is the nested vectored interrupt controller (NVIC). If any enabled interrupts have 
been requested, the NVIC selects the one with the highest priority and directs the CPU to start 
executing its ISR. The NVIC contains control registers to enable and prioritize interrupts.

Between the peripherals and NVIC there may be an optional wakeup interrupt controller 
(WIC). The WIC duplicates the interrupt masking of the NVIC, which enables the NVIC to 
be turned off to reduce power use when the system is idle or sleeping. The WIC will wake up the 

Memory Address Contents

0x2000 0ffc Free space

SP before exiting exception handler → 0x2000 1000 Saved R0

0x2000 1004 Saved R1

0x2000 1008 Saved R2

0x2000 100c Saved R3

0x2000 1010 Saved R12

0x2000 1014 Saved LR

0x2000 1018 Saved PC

0x2000 101c Saved xPSR

SP after exiting exception handler → 0x2000 1020 Data

Figure 4.17 � Stack changes upon preparing to exit an exception handler.
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NVIC if interrupts are requested, ensuring they are processed and not lost. The Kinetis KL25Z 
MCU features a WIC called the asynchronous WIC (AWIC).

Finally, on the right is the processor core, which can be directed to respond to an IRQ and 
execute an ISR. Within the control register PRIMASK, the PM flag determines whether inter-
rupts (and certain other exceptions) are recognized or ignored. Setting PM to one will cause the 
CPU to ignore these interrupts. PM is cleared to Zero when the processor is reset.

Exception Sources, Vectors, and Handlers

Each possible exception source has a vector to specify its handler routine. The starting addresses 
for these handlers are stored in a vector table. Table 4.3 shows information (including the vector 
address) for Cortex-​M system exceptions, and Table 4.4 shows similar information for microcon-
troller-​specific interrupts. Each vector is four  bytes long in order to hold the 32-​bit address of the 
corresponding handler routine. Each vector starts on an address that is a multiple of four, starting 
with address 0x0000_​0004.

Peripheral
Cortex-M0+ 
Processor 

Core

Nested 
Vectored 
Interrupt 

Controller 
(NVIC)

Port Module
Interrupts

Peripheral

Peripheral

Peripheral

Masking Information

Wakeup 
Interrupt 

Controller 
(WIC)

Figure 4.18 � Overview of hardware for interrupt system in KL25Z MCU.

vector
Address of an exception handler

Vector Table
Table of vectors used to process different exceptions

Cortex-​M0+ Exception Sources
The Cortex-​M0+ CPU core can generate several types of exceptions, which are listed in 
Table 4.3. These exceptions occur when the CPU starts up, when errors occur, and when 
system services are requested. Two critical exceptions are Reset, which occurs when the pro-
cessor first starts running (after being powered up or reset) and HardFault, which occurs 
when software tries to perform an illegal operation. If you find your program stuck in the 
HardFault handler, your code may have tried accessing a peripheral that hadn’t been enabled 
yet through clock gating.
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KL25Z Interrupt Sources
Many of the KL25Z MCU peripherals can request interrupts, and are shown in Table 4.4. Vectors 
for interrupts start with IRQ0 at address 0x0000_​0040. Further details can be found in the MCU 
reference manual [5].

In our example system, the two switches are connected to PORTD. When a switch changes, the 
port control module signals the NVIC, which will issue interrupt request #31 to the CPU. The CPU 

Table 4.3 Selected Cortex-​M0+ Exception Sources and Descriptions

Vector Address Vector # Name Description

0x0000_​0004 1 Reset CPU reset

0x0000_​0008 2 NMI Nonmaskable interrupt

0x0000_​000C 3 HardFault Hard fault error

0x0000_​002C 11 SVCall Call to supervisor with SVC instruction

0x0000_​0038 14 PendSV System-​level service request

0x0000_​003C 15 SysTick System timer tick

Table 4.4 KL25Z Interrupt Sources and Descriptions

Vector address Vector # IRQ Description

0x0000_​0040, 44, 48, 4C 16–​19 0–​3 Direct memory access controller

0x0000_​0058 22 6 Power management controller

0x0000_​005C 23 7 Low leakage wake up

0x0000_​0060, 64 24–​25 8–​9 I2C communications

0x0000_​0068, 6C 26–​27 10–​11 SPI communications

0x0000_​0070, 74, 78 28–​30 12–​14 UART communications

0x0000_​007C 31 15 Analog to digital converter

0x0000_​0080 32 16 Comparator

0x0000_​0084, 88, 8C 33–​35 17–​19 Timers and pulse-​width modulation

0x0000_​0090, 94 36–​37 20–​21 Real-​time clock alarm and seconds

0x0000_​0098 38 22 Programmable interval timer

0x0000_​00A0 40 24 USB on-​the-​go

0x0000_​00A4 41 25 Digital to analog converter

0x0000_​00A8 42 26 Touch sense interface

0x0000_​00AC 43 27 Main clock generator

0x0000_​00B0 44 28 Low power timer

0x0000_​00B8 46 30 Port control module, Port A pin detect

0x0000_​00BC 47 31 Port control module, Port D pin detect
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will read the vector table to find the location of the ISR for IRQ #31 (vector #47). In particular, it 
will read the word starting at address 0x0000_​00BC and load it into the PC so the ISR will execute.

Vector Table Definition and Handler Names
CMSIS-​CORE specifies standard names for system exception handlers. Different micro-
controllers will have different peripherals, so the interrupt handler’s names and vectors 
are defined in the MCU-​specific startup code. The KL25Z4 MCUs use the assembly lan-
guage file startup_​MKL25Z4.s, shown in Listing 4.2. The DCD symbol tells the assembler to 
define a constant data word with the value specified, in this case the address of the specified  
handler.

_​_​Vectors    
          DCD   _​_​initial_​sp  ; Top of Stack
          DCD   Reset_​Handler  ; Reset Handler
          DCD   NMI_​Handler  ; NMI Handler
          DCD   HardFault_​Handler  ; Hard Fault Handler
          DCD   0  ; Reserved
          DCD   0  ; Reserved
          DCD   0  ; Reserved
          DCD   0  ; Reserved
          DCD   0  ; Reserved
          DCD   0  ; Reserved
          DCD   0  ; Reserved
          DCD   SVC_​Handler  ; SVCall Handler
          DCD   0  ; Reserved
          DCD   0  ; Reserved
          DCD   PendSV_​Handler  ; PendSV Handler
          DCD   SysTick_​Handler  ; SysTick Handler
          ; External Interrupts
          DCD   DMA0_​IRQHandler  ; DMA channel 0 transfer complete interrupt
          DCD   DMA1_​IRQHandler  ; DMA channel 1 transfer complete interrupt
          DCD   DMA2_​IRQHandler  ; DMA channel 2 transfer complete interrupt
          DCD   DMA3_​IRQHandler  ; DMA channel 3 transfer complete interrupt
           DCD   Reserved20_​IRQHandler  ; Reserved interrupt 20
          DCD   FTFA_​IRQHandler  ; FTFA interrupt
          DCD   LVD_​LVW_​IRQHandler  ; Low Voltage Detect, Low Voltage Warning
          DCD   LLW_​IRQHandler  ; Low Leakage Wakeup
          DCD   I2C0_​IRQHandler  ; I2C0 interrupt
          DCD   I2C1_​IRQHandler  ; I2C0 interrupt 25
          DCD   SPI0_​IRQHandler  ; SPI0 interrupt
          DCD   SPI1_​IRQHandler  ; SPI1 interrupt
          DCD   UART0_​IRQHandler  ; UART0 status/​error interrupt
          DCD   UART1_​IRQHandler  ; UART1 status/​error interrupt
          DCD   UART2_​IRQHandler  ; UART2 status/​error interrupt
          DCD   ADC0_​IRQHandler  ; ADC0 interrupt
          DCD   CMP0_​IRQHandler  ; CMP0 interrupt
          DCD   TPM0_​IRQHandler  ; TPM0 fault, overflow and channels interrupt
          DCD   TPM1_​IRQHandler  ; TPM1 fault, overflow and channels interrupt
          DCD   TPM2_​IRQHandler  ; TPM2 fault, overflow and channels interrupt
          DCD   RTC_​IRQHandler  ; RTC interrupt
          DCD   RTC_​Seconds_​IRQHandler  ; RTC seconds interrupt
          DCD   PIT_​IRQHandler  ; PIT timer interrupt
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          DCD   Reserved39_​IRQHandler  ; Reserved interrupt 39
          DCD   USB0_​IRQHandler  ; USB0 interrupt
          DCD   DAC0_​IRQHandler  ; DAC interrupt
          DCD   TSI0_​IRQHandler  ; TSI0 interrupt
          DCD   MCG_​IRQHandler  ; MCG interrupt
          DCD   LPTimer_​IRQHandler  ; LPTimer interrupt
          DCD   Reserved45_​IRQHandler  ; Reserved interrupt 45
          DCD   PORTA_​IRQHandler  ; Port A interrupt
          DCD   PORTD_​IRQHandler  ; Port D interrupt

Listing 4.2 � Vector table for KL25Z MCU in startup_​MKL25Z4.s.

Peripheral Interrupt Configuration

We must configure the peripheral and the NVIC in order to use interrupts, as shown in Figure 
4.19. After reset, the processor core is already set up to accept interrupts, since the PM bit is 
cleared to zero. We first examine how to configure a peripheral to generate an interrupt request. 
Different types of peripherals have interrupt configuration options. Here we will examine the 
Kinetis KL25Z’s PORT module as it is used in our example system. We will examine interrupt 
configuration for other peripherals in later chapters.

The IRQC field in the pin control register (PCR), shown in Figure 4.20, controls the condi-
tions under which an interrupt will be generated. Interrupts can be generated when the input is 

Cortex-M0+
Processor

Core
NVICPeripheral

Figure 4.19 � Configure peripheral to generate interrupts.

Bit

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24

ISF 0

0 0 0

w1c

MUX DSE PFE SRE PE PS

23 22 21 20 19 18 17 16

IRQC

0 0 0 0 0 x* x* x* 0 x* 0 x* 0 x* x* x*

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Bit

R

W

Reset

* Notes:

•   x = Undefined at reset.

Figure 4.20 � Pin control register contents [1] p. 183.
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logic zero, logic one, a rising edge, a falling edge, or either edge, as selected by the code in Table 
4.5. Full details are presented in the reference manual [5].

Listing 4.3 shows how to set the IRQC field using the Kinetis-​specific macro PORT_​PCR_​
IRQC from the CMSIS-​compliant device driver.

PORTD-​>PCR[SW1_​POS] = PORT_​PCR_​IRQC(9) | PORT_​PCR_​MUX(1);

Listing 4.3 � Configuring Port D bit SW1_​POS to generate an interrupt on the rising edge of input signal.

The port module interrupt status flag register (ISFR) indicates which interrupts have been 
detected for this port. A bit value of one indicates the corresponding interrupt has been detected. 
The ISR needs to write a one to a bit to clear it to zero, with CMSIS-​CORE, the ISFR is accessed 
as PORTD-​>ISFR.

NVIC Operation and Configuration

Next we examine how to configure the NVIC (Figure 4.21), which selects the highest-​priority-​
enabled interrupt request and directs the CPU to execute its ISR. The NVIC supports up to 32 
interrupt sources, called IRQ0 through IRQ31. Each source can be configured. Each interrupt 
source can be enabled, disabled, and prioritized. Pending interrupt processing status can be read 
and modified.

Cortex-M0+
Processor

Core  
NVICPeripheral

Figure 4.21 � Configure NVIC to manage interrupt requests.

Table 4.5 Interrupt Generation Condition Codes

Code Condition Selected

0 Interrupt/​DMA request disabled

8 Interrupt when logic zero

9 Interrupt on rising edge

10 Interrupt on falling edge

11 Interrupt on either edge

12 Interrupt when logic one

Other Reserved, or for DMA
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Enable
Each interrupt source can be enabled or disabled separately using the NVIC registers ISER and 
ICER. Each is 32 bits, with each bit corresponding to an interrupt source. To enable an interrupt 
source N, write a 1 to bit N in ISER. To disable an interrupt source N, write a 1 to bit N in ICER. 
Reading ISER or ICER will return the enabled or disabled state for all 32 interrupt sources.

The CMSIS-​CORE API provides this interface:

void NVIC_​EnableIRQ(IRQnum) –​ Enable interrupts of type IRQnum
void NVIC_​DisableIRQ(IRQnum) –​ Disable interrupts of type IRQnum

Values for IRQnum are defined by the CMSIS-​compliant device driver, and are listed in the 
MKL25Z4.h file in the section called “Interrupt Number Definitions”. Examples are TMP0_​
IRQn, LPTimer_​IRQn, and PORTD_​IRQn.

Priority
Each exception source has a priority that determines the order in which simultaneous exception 
requests are handled. The requested exception with the lowest priority number will be handled 
first. Some exceptions have fixed priorities, such as reset, NMI, and hard fault. Other exceptions 
(including interrupts) have configurable priorities.

The NVIC contains multiple interrupt priority registers (IPR0 through IPR7). Each IPR has 
an 8-​bit field for each of four interrupt sources. Each field specifies one of four possible priority 
levels (0, 64, 128, and 192) for that source. Multiple interrupt sources can have the same prior-
ity. The CMSIS-​CORE API provides the interface here. Note that the prio parameter should 
be set to 0, 1, 2, or 3, as the code shifts the value 6 bits to the left before saving it to the priority 
field:
void NVIC_​SetPriority(IRQnum, prio) –​ Set interrupt source IRQnum to priority prio
uint32_​t NVIC_​SetPriority(IRQnum) –​ Get priority of interrupt source IRQnum

Pending
An interrupt is pending if it has been requested but has not yet been serviced. The flag is set by 
hardware when the interrupt is requested. Software can also set the flag to request the interrupt. 
An interrupt handler that runs must clear its source’s pending IRQ flag or else the handler will 
run repeatedly.

pending
Requested but not yet serviced (e.g. interrupt)

The CMSIS-​CORE API provides this interface:

uint32_​t NVIC_​GetPendingIRQ(IRQnum)  –​ Returns 1 if interrupt from IRQnum is 
pending
void NVIC_​SetPendingIRQ(IRQnum) –​ Sets interrupt pending flag for IRQnum
void NVIC_​ClearPendingIRQ(IRQnum) -​ Clears interrupt pending flag for IRQnum
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Exception Masking

Finally the processor core can be configured to accept or ignore certain types of exceptions, as 
shown in Figure 4.22. The CPU core’s PRIMASK register controls whether interrupts and other 
exceptions of configurable priority are recognized or not. The PM flag is stored in bit zero of 
PRIMASK. A PM value of zero allows those exceptions to be recognized by the CPU, whereas a 
one prevents it. The PM bit is accessed using the CPSID and CPSIE instructions. Note that when 
the CPU is reset or powers up, PM is set to zero, so these exceptions are not ignored.

The CMSIS-​CORE API provides these interfaces for accessing the PM flag:

void _​_​enable_​irq() -​ clears PM flag
void _​_​disable_​irq() -​ sets PM flag
uint32_​t _​_​get_​PRIMASK() -​ returns value of PRIMASK
void _​_​set_​PRIMASK(uint32_​t x) -​ sets PRIMASK to x

Safely Masking Interrupts
A function may need to ensure no interrupts are handled during a certain sequence of opera-
tions (called a critical section). One approach is to call _​_​disable_​irq() before the sequence 
of operations and _​_​enable_​irq() after. However, if interrupts were already disabled (for some 
other reason) before executing the sequence of operations, then it is incorrect to enable them 
afterward.

The correct approach is shown in Listing 4.4. The code must save the masking state (using 
_​_​get_​PRIMASK()) before disabling interrupts (using _​_​disable_​IRQ()). After performing the 
critical section operations, the saved masking state is restored (using _​_​set_​PRIMASK()).

void my_​function(void) {
    uint32_​t masking_​state;
    //​ Perform non-​critical processing
    //​ ...
    masking_​state = _​_​get_​PRIMASK();    //​ Get current interrupt masking state
    _​_​disable_​irq();                      //​ disable interrupts
    //​ Perform critical section operations
    //​ ...
    _​_​set_​PRIMASK(masking_​state);          //​ Restore previous interrupt masking state
    //​ Perform more non-​critical processing
    //​ ...
}

Listing 4.4 � Correct method to prevent interrupts during critical section of code saves and restores 
interrupt masking state.

Cortex-M0+
Processor

Core
NVICPeripheral

Figure 4.22 � Configure processor core to process exceptions.
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Software for Interrupts
When creating software for a system that uses interrupts, we design the system first and then 
implement it by writing the code. We design the system by identifying which interrupts to use and 
then deciding how to divide (partition) the work between ISRs and main-​line code. We can then 
write the code to configure hardware to generate and handle interrupts, and finally write the code 
for the ISRs themselves.

Program Design

Selecting which interrupts to use is generally simple because they are peripheral-​specific. 
Some peripherals have flexible interrupt generation capabilities that can simplify the soft-
ware design significantly when used appropriately. We will examine these features in later  
chapters.

Determining how to structure the code in response to the interrupt depends on two major 
issues: How should we partition work between the ISR and the main-​line code? How will the ISR 
communicate the remaining work to the main-​line code? We discuss these next. These topics are 
covered further in other texts [6], [7], [8].

Partitioning
The ISR should perform only quick, urgent work related to the interrupt. Other work should be 
deferred to the main-​line code when feasible. This keeps each ISR quick and doesn’t delay other 
ISRs unnecessarily. Keeping ISRs short also makes the code much easier to debug.

Consider the flashing LED example from the previous chapter. Pressing or releasing a switch 
will trigger an interrupt. Figure 4.23 shows the work involved in response. Software must identify 
which switch changed, determine the new value of the switch, update the variables g_​w_​delay, g_​
RGB_​delay, and g_​flash_​LED, and light the LEDs.

Update 
g_RGB_delay, 

g_w_delay

Update 
g_flash_LED

Task_RGB: Light 
LEDs in RGB 

sequence

Task_Flash: Flash 
LEDs white 
and black

Did switch 
1 change?

Did switch 
2 change?

Determine 
new value 
of switch 1

Determine 
new value 
of switch 2

Interrupt service routine Task or main-line code

Optional: 
Update LEDs 
immediately

Option 1: Short ISR

Option 2: Medium ISR

Option 3: Long ISR

Figure 4.23 � Three options for partitioning work between ISR and task code for the flashing LED 
example.
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How much of this work should be done in the ISR, and how much should be left in the main-​
line code? Let’s consider three options:

•	 Option 1: Short ISR. The ISR simply signals which switch changed and how (whether pressed 
or released). A task in the main-​line program needs to update the delay and flash mode vari-
ables based on this switch information. This could be done by Task_​RGB and Task_​Flash, 
which would reduce the code’s modularity. The variables could be updated by a new task, which 
would add the overhead of creating and running another task.

•	 Option 2: Medium ISR. The ISR directly updates the delay and flash mode variables. This is a 
quick, low overhead approach.

•	 Option 3: Long ISR: The ISR directly updates the delay and flash mode variables, and imme-
diately updates the LED based on the new delay or flash mode. This approach is much more 
responsive than the first two, but we have a problem when the ISR completes and the previ-
ously executing task resumes. That task will light the LEDs with the wrong colors or the wrong 
delays. We need a way to disable or restart that task, and this is not simple.

Communication
When work is split up between the ISR and the main-​line code, we need a way to communicate 
the intermediate results between the pieces.

In Options 2 and 3 above, the ISR directly updates the delay and flash mode variables. These 
can be shared variables which the ISR writes and the task code reads. This is a straightforward and 
simple solution.

The first option is more complex. The ISR writes to shared variables that indicate which switch 
changed and how. The task code reads the switch variables and then updates the delay and flash 
mode variables. However, how do we keep the task code from reusing the switch variables the 
next time it runs? Should the ISR use a flag to tell the task to run once? Or should the task erase 
the switch variables when it is done with them?

There are more questions to consider. What should the system do if the ISR runs more than 
once before the main-​line task code can run? Should the task code process the data from just the 
first ISR instance, or just the last? If the task code must process all the data, then it must be saved 
somehow. For example, a system with serial communication should not lose any incoming or out-
going data. The ISR and the task code will need to coordinate on how to store the data and reuse 
space effectively. We will see how to do this with queues in a later chapter. Kernels and RTOSs 
also provide queues for application programs to use.

Example System Design
We choose the intermediate partitioning approach to create the design shown in Figure 4.24. 
The ISR updates the shared variables g_​w_​delay, g_​RGB_​delay, and g_​flash_​LED, which in turn 
are read by the tasks. We do not need to buffer or accumulate data for this example. If the user 
presses a switch multiple times before a task can run, the ISR will update the shared variables 
multiple times. We only care about the last value of each variable, which the task uses to control 
the flashing.

The developer should consider the range of partitioning options to find a good balance between 
performance (responsiveness) and complexity. More partitioning improves responsiveness for the 
rest of the system, but increases the communication complexity and reduces responsiveness for 
the interrupt in question.
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Interrupt Configuration

Let’s write the code to configure the hardware. As shown in Figure 4.25, the code must configure 
three parts of the system to use interrupts: the peripheral, the NVIC, and the CPU core.

The code to initialize interrupts for our example is shown in Listing 4.5. First, the code 
configures the peripheral to generate interrupts. This step is peripheral-​specific. In our example 
with the KL25Z port module, we need to specify which port input bits should generate inter-
rupts and under what circumstances. The port module is described earlier in this chapter, in the 
section “Peripheral Interrupt Configuration” below. The two switches are connected to port D 
bits SW1_​POS (bit 7) and SW2_​POS (bit 6), so we will access the PCR for each bit. If we want 
any input change to generate an input, referring to Table 4.5, we find that we will need to set 
IRQC for these bits to binary 11 (decimal 3).

Second, the code configures the NVIC to recognize this interrupt and with a given priority. 
Both switches are connected to the PORTD module, so we will use the PORTD_​IRQn name from 
CMSIS-​CORE. We first set the priority using a call to NVIC_​SetPriority, then clear any pending 

Interrupt
Service
Routine

Task_Flash

g_w_delay g_flash_LED g_RGB_delay

Task_RGB

RGB LEDs

Switches

Figure 4.24 � Communication and control paths among hardware and software components in example 
LED flashing system.

Cortex-M0+
Processor

Core  
NVICPeripheral

NVIC_EnableIRQ(IRQnum)
NVIC_DisableIRQ(IRQnum)

__enable_irq()
__disable_irq()

Peripheral-specific code
to enable interrupts

Figure 4.25 � Interrupts must be enabled in peripheral, NVIC, and processor core.
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interrupts using a call to NVIC_​ClearPendingIRQ, and then finally enable the interrupt using 
NVIC_​EnableIRQ.

#def﻿﻿ine SW1_​POS (7)   //​ on port D
#define SW2_​POS (6)   //​ on port D

#define MASK(x) (1UL << (x))

void Initialize_​Interrupts(void) {
    /​* Configure PORT peripheral. Select GPIO and enable pull-​up 
    resistors and interrupts on all edges for pins connected to switches */​
    PORTD-​>PCR[SW1_​POS] = PORT_​PCR_​MUX(1) | PORT_​PCR_​PS_​MASK |
        PORT_​PCR_​PE_​MASK | PORT_​PCR_​IRQC(11);
    PORTD-​>PCR[SW2_​POS] = PORT_​PCR_​MUX(1) | PORT_​PCR_​PS_​MASK |
        PORT_​PCR_​PE_​MASK | PORT_​PCR_​IRQC(11);

    /​* Configure NVIC */​
    NVIC_​SetPriority(PORTD_​IRQn, 2);
    NVIC_​ClearPendingIRQ(PORTD_​IRQn);
    NVIC_​EnableIRQ(PORTD_​IRQn);

    /​* Optional: Configure PRIMASK in case interrupts were disabled. */​
    _​_​enable_​irq();
}

Listing 4.5 � Code to initialize interrupts.

Third, the code may ensure that interrupts are not disabled. When the processor comes out of 
reset, the PM bit in the CPU’s PRIMASK register will be zero, so interrupts will be enabled and 
the PM bit will not need to be modified. However, if other code has run and set the PM bit, then 
it is necessary to call _​_​enable_​irq.

Writing ISRs in C

Let’s move on to writing the actual ISR. The ISR function takes no arguments and has no 
return values (e.g. void PORTD_​IRQHandler (void)). An ISR must be named according to the 
CMSIS-​CORE exception handler names shown in Listing 4.2 (e.g. PORTD_​IRQHandler, RTC_​
IRQHandler). This ensures that the software toolchain places ISR addresses in the vector table 
correctly. The source code for the ISR for our example system is shown in Listing 4.6.

volatile uint8_​t g_​flash_​LED = 0;   //​ initially don't flash LED, just do RGB sequence
volatile uint32_​t g_​w_​delay = W_DELAY_SLOW;     //​ delay for white flash
volatile uint32_​t g_​RGB_​delay = RGB_DELAY_SLOW;  //​ delay for RGB sequence
void PORTD_​IRQHandler(void) {
    //​ Read switches
    if ((PORTD-​>ISFR & MASK(SW1_​POS))) {
        if (SWITCH_​PRESSED(SW1_​POS)) { //​ flash white
            g_​flash_​LED = 1;
        } else {
            g_​flash_​LED = 0;
        }
    }
    if ((PORTD-​>ISFR & MASK(SW2_​POS))) {
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        if (SWITCH_​PRESSED(SW2_​POS)) { //​ short delays
            g_​w_​delay = W_DELAY_FAST;
            g_​RGB_​delay = RGB_DELAY_FAST;
        }   else {
            g_​w_​delay = W_DELAY_SLOW;
            g_​RGB_​delay = RGB_DELAY_SLOW;
        }
    }
    //​ clear status flags 
    PORTD-​>ISFR = 0xffffffff;
}

Listing 4.6 � Source code for shared variables and interrupt service routine (handler).

Both switches are connected to Port D, so we name the ISR PORTD_​IRQHandler to match 
the entry in the vector table.

Our ISR needs to determine which switch changed, and what the switch’s new value is. To do 
this, the ISR needs to read the interrupt status flag register (ISFR) in PORTD to determine which 
bit triggered the interrupt. The new value of the switch is determined by reading the port input 
data bit with the macro SWITCH_​PRESSED.

After determining which switch changed and how, the code can update the shared variables g_​
flash_​LED, g_​w_​delay, and g_​RGB_​delay.

Finally, we clear the interrupt status flag register by writing all ones to PORTD-​>ISFR.

Sharing Data Safely Given Preemption

Sharing data in a system with preemption introduces possible problems. Note that both inter-
rupts and preemptive task scheduling (e.g. with a kernel) can cause preemption. Interrupts can 
preempt tasks. In a system with preemptive scheduling, tasks can preempt other tasks.

Volatile Data Objects
The first problem comes from the fact that shared data objects are stored in memory. When creat-
ing a function that uses the shared data, the compiler generates instructions to copy the data into 
a register to process it. This occurs each time the variable appears in the source code. However, 
if the shared data is used multiple times in the function, the compiler may optimize the code by 
reusing the value that was loaded the first time, rather than generating more instructions to reload 
it for successive uses.
void Task_​RGB(void) {
  if (g_​flash_​LED == 0) {      //​ Only run task when NOT in flash mode
  	 Control_​RGB_​LEDs(1, 0, 0);
  	 Delay(g_​RGB_​delay); //​ �Code reads g_​RGB_​delay from memory into register
  	 //​ �If switch 2 changes now, the ISR will run and update g_​RGB_​delay in memory
  	 Control_​RGB_​LEDs(0, 1, 0);
  	 Delay(g_​RGB_​delay);   //​ �Error: using old value of g_​RGB_​delay in register
  	 Control_​RGB_​LEDs(0, 0, 1);
  	 Delay(g_​RGB_​delay);   //​ �Error: using old value of g_​RGB_​delay in register
 }
}

Listing 4.7 � Task_​RGB might reuse first value of g_​RGB_​delay.
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Consider the code in Listing 4.7. The shared variable g_​RGB_​delay is used three times. The 
compiler generates code to load g_​RGB_​delay from memory into a register for the first call to the 
subroutine called Delay. For optimization reasons, the compiler may reuse the value that was read 
the first time in the second and third calls to Delay. Consider the case shown in the code listing, in 
which switch 2 changes after the first use of g_​RGB_​delay. The ISR will run and change the value 
of g_​RGB_​delay in memory. However, the code is still using the old value of g_​RGB_​delay, causing 
a program error.

In other cases the source code may specify writing the result back to memory. To speed 
up the program, the compiler may not save the updated values back to memory until neces-
sary (e.g. the end of the function). Imagine that such a function is executing. It has already 
loaded the value and updated the value, but the code is optimized so that it does not save 
the updated value back to memory until the end of the function. An interrupt is requested, 
causing an ISR to run that changes the shared variable in memory. When the function 
resumes executing, it will be using the old value of the shared variable, not the new value. 
When the function completes, it will overwrite the new value with the updated old value, 
causing an error.

We call this shared data volatile because it can change outside a program’s normal flow of con-
trol. If an ISR may change a variable used by main-​line code, then that data is volatile. Similarly, 
a hardware register (e.g. a counter) that may change on its own is also volatile.
volatile uint8_​t g_​flash_​LED = 0;   //​ initially don't flash LED, just do RGB
volatile uint32_​t g_​w_​delay = W_DELAY_SLOW;     //​ delay for white flash
volatile uint32_​t g_​RGB_​delay = RGB_DELAY_SLOW;  //​ delay for RGB sequence

Listing 4.8 � Variables shared between ISR and mainline code must be defined as volatile.

We tell the compiler that a variable may change outside of its control by using the volatile 
keyword before the data type in the variable’s definition. This forces the compiler to reload the 
variable from memory each time it is used in the source code. In Listing 4.8 the shared variables 
g_​Flash_​LED, g_​w_​delay, and g_​RGB_​delay are defined as volatile. This indicates to the compiler 
that they may change unexpectedly (e.g. an ISR may change them).

Atomic Object Access
The second problem comes from the fact that some data objects take multiple operations 
to modify. This means they do not have atomic (i.e. indivisible) access. If the program is 
preempted in the middle of these operations, then the data object is only partially updated 
and is incorrect. If the preempting code accesses the data object, it will get incorrect data, 
causing an error.

atomic
Indivisible, cannot be interrupted or preempted

Consider our example LED flasher system. Let’s consider changing the size of g_​RGB_​delay 
from one word (uint32_​t, which is 32 bits) to two words (uint64_​t, which is 64 bits) to allow 
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longer time delays. The code will now need to perform two load operations to read g_​RGB_​delay 
from memory: LDR r0, [g_​RGB_​delay] for the low word and LDR r1, [g_​RGB_​delay+4] for the 
high word. Similarly, two store operations are needed to write the two words back.

Consider the case in which switch 2 changes, while the first load instruction is executing. 
The CPU will complete that first load (low word) and then execute the ISR. The ISR will 
update the two words of g_​RGB_​delay in memory. The task code will then resume by loading 
r1 with the second (high) word from memory. The registers now hold corrupted data: r0 holds 
the old low word, and r1 holds the new high word. This is called a data race situation, as it 
depends on the specific timing relationship between the program execution and the inter-
rupt request. The sequence of instructions that should not be interrupted is called a critical 
section.

data race
Situation in which the ill-​timed preemption of a code critical section can result in an incorrect program result

critical section
Section of code which may execute incorrectly if not executed atomically

volatile uint64_​t g_​RGB_​delay_​64;

void my_​function(void) {
    uint32_​t masking_​state;
    uint64_​t temp_​delay;

    //​ Perform non-​critical section processing
    //​ ...

    //​ Disable interrupts before critical section
    masking_​state = _​_​get_​PRIMASK();  //​ Get current interrupt masking state
    _​_​disable_​irq();                   //​ disable interrupts

    //​ Execute critical section 
    temp_​delay = g_​RGB_​delay_​64;        //​ load delay safely into temporary variable

    //​ Restore interrupt masking state after critical section
    _​_​set_​PRIMASK(masking_​state);      //​ Restore previous interrupt masking state

    //​ Resume non-​critical section processing
    Delay(temp_​delay);                 //​ Use temporary variable   
    //​ ...
}

Listing 4.9 � Disabling interrupts to make a critical section atomic.

We solve this problem by disabling preemption during the critical section. For example, we can 
disable interrupts during the critical section as shown in Listing 4.9. As described in the section 
“Safely Masking Interrupts” above, we need to save the interrupt masking state, mask interrupts, 
and then restore the previous interrupt masking state. Preemptive kernels offer this and related 
methods to prevent preemption during critical sections of code.
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Summary

In this chapter, we explored the basic organization and programmer’s model of a Cortex-​M0+ 
CPU core. We learned about general-​purpose registers and special control registers in the core. 
We saw how memory is addressed and how a stack works. We examined the available instruc-
tions, including data movement, data processing, memory access, control flow, and miscellaneous 
instructions. We learned about different processor operating modes and how Thumb instructions 
differ from standard ARM instructions.

We then examined exceptions and interrupts. We saw the steps the CPU follows to handle 
exceptions: looking up a handler’s address in the vector table, entering the exception handler 
and then exiting it. We then covered the path that interrupts follow: from generation by a 
peripheral, through the NVIC, and finally through the CPU masking hardware. Finally we 
discussed how to design software for interrupts: how to partition work between the ISR and 
main-​line code, how to write software which configures the hardware to generate and recognize 
interrupts, and how to write the ISR. We also discussed how to handle volatile data and provide 
atomic object access.

Exercises

1.	 How does the word 0xdec0ded1 appear in memory in a little-​endian memory system as well 
as in a big-​endian memory system? Specify the relative address for each byte.

2.	 Does the stack in ARM processors grow toward larger or smaller addresses?
3.	 Assuming that SP is 0x0000_​2220 initially, what is its value after executing the instruction 

PUSH {r0,r2}?
4.	 Assuming that SP is 0x0000_​2010 initially, what is its value after executing the instruction 

POP {r0-​r7,PC}?
5.	 Write the Thumb code to add number five to the contents of register r6.
6.	 Write the Thumb code to subtract 1,000 from the contents of register r6, using r3 as a tempo-

rary register.
7.	 Write the Thumb code to multiply the two 32-​bit values in memory at addresses 0x1234_​

5678 and 0x7894_​5612, storing the result in address 0x2000_​0010.
8.	 Write the Thumb code to load register r0 with the ASCII code for the letter “E” if the number 

in r12 is even, or “O” if it is odd.
9.	 Which modules generate the IRQ0, IRQ10, and IRQ31 interrupt requests, and what are their 

CMSIS typedef enumeration labels? Examine the interrupt vector assignments (IVA) table in 
the KL25Z subfamily reference manual and the MKL25Z4.h file (or appropriate device.h file 
for a different MCU device).

10.	 We would like to configure a KL25Z MCU so that if interrupts IRQ0, IRQ10, and IRQ31 are 
requested simultaneously, the CPU responds by servicing IRQ10 first, then IRQ0, and finally 
IRQ31. Write the C code using CMSIS functions to configure the MCU.

11.	 We wish to enable IRQ13 but disable IRQ24. What values need to be loaded into which 
register bits, and what is the sequence of CMSIS calls to accomplish the same?

12.	 We wish to determine if IRQ7 has been requested. Which register and which bit will indicate 
this? What is the CMSIS call that will reveal the information?
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13.	 Which register can an exception handler use to determine if it is servicing exception num-
ber 0×21? What value will the register have? What is the CMSIS interface code to read 
the IPSR?

14.	 The code in Listing 4.6 clears the status flags for all bits in Port D’s interrupt status flag register. 
Under what circumstances might this lead to incorrect system operation?
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Overview

In Chapter 4 we examined the ARM Cortex-​M0+ processor core, including the instructions that 
it can execute, the registers for general-​purpose data processing, and methods to access memory. 
In this chapter we will see the object code that the compiler creates to implement the C-​language 
source code. Understanding this object code will help us debug our programs and write source 
code that is more efficient in its use of time or memory.

Motivation

We have seen the instructions that the ARM Cortex-​M0+ processor core can execute. Each 
instruction performs simple operations, such as adding two integers, comparing values, or push-
ing registers onto the stack in memory. Creating a program using these instructions requires the 
developer to make many small decisions: where to place a data variable in memory, which register 
to use to process that variable, which kind of conditional branch to use after a comparison, how 
to share data between functions, and so forth. This complexity slows software development and 
introduces many opportunities for errors.

High-​level programming languages were developed to free the software developer from these 
issues. C and C++ are the dominant programming languages for embedded systems. We use a lan-
guage translation tool called a compiler to convert an application program from one high-​level 
language to assembly language, and another tool called an assembler to convert the assembly 
language to object code. The CPU executes the program by reading each object code instruction 
and then executing it very quickly (e.g. within one or two CPU clock cycles).

In some programming languages (e.g. Java, Perl, Python), an application program is not con-
verted to the CPU’s native executable format. Instead, at runtime the application program is 
processed by another program (such as an interpreter or virtual machine) to carry out the work 
specified. Java code can be compiled to an intermediate form called bytecode before the program 
is run. At runtime the virtual machine program interprets and executes the bytecode. The inter-
preter or virtual machine program increases the amount of time and memory needed to run an 
application program. Compiled languages dominate embedded systems development because they 
do not incur these runtime and memory overheads, and also because they offer more predictable 
behavior.

A toolchain is a set of tools used to build the program (to convert it from source code to execut-
able object code), download it to the MCU’s memory, and control its execution for debugging. 
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The toolchain must be configured to support the specific type of processor we are using and how 
much memory is in the system.

Using a high-​level programming language introduces trade-​offs. We expect the toolchain to 
generate an object code that is correct, and also reasonably fast and small. It may be possible to 
manually create faster or smaller object code by writing the assembly code ourselves, but we will 
do this only when necessary.

Software Development Tools

Three major types of tools used for embedded software development are the program build tool-
chain, the programmer, and the debugger. The program build toolchain translates a program into 
a format that the MCU can understand, stored in an executable file. The programmer programs 
that information into the MCU’s program memory. This memory is nonvolatile (typically Flash 
ROM), so it will remain even after power is removed. The debugger enables the developer to  
control program execution and examine the program state (e.g. current instruction, values of 
processor registers, and data memory) as it runs on the processor.

These tools are often grouped together in a single integrated development environment (IDE) 
to simplify development. In this textbook we cover the Keil µVision (microVision) IDE.

Program Build Tools

Figure 5.1 gives an overview of the build tools and the files they process to create the final execut-
able file. Programs are built of modules that are translated through a series of formats and then 
combined into an executable file. The file my_​module.c contains the module’s code in the C 
language format. This is compiled to create an assembly language module in the file my_​module.s, 
which is then assembled to create an object module in the file my_​module.o. This module is 
linked with other modules (also in object format) to create the executable file.

Assembler

Compiler

Linker/
Loader

Source
Files
.c, .h

Assembly
Files

.s

Object
Files

.o

Executable
File
.axf

Assembly
Files

.s

Library
Files
.lib

Figure 5.1 � Program build tools process different files to create a file holding the executable program.
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Compiler

A compiler converts a module from a high-​level language such as C into assembly language. Keil 
µVision uses the armcc compiler [1]. The compiler compiles one source file (e.g. .c) at a time,  
following these steps:

•	 Pre-​process the.c file by including the text of any included files (e.g. with #include) and 
performing macro substitution (e.g. #define).

•	 Verify that the syntax of the program is correct.
•	 Create intermediate code from the source code.
•	 Perform high-​level optimization of the intermediate code.
•	 Generate assembly code from the intermediate code and allocate variable uses to registers.
•	 Perform low-​level optimization of the assembly code.
•	 Generate an output file (.s) containing the assembly code for the module.

Note that the compilation process is not one-​to-​one. The compiler’s primary goal is to create 
object code that correctly implements the requirements specified by the source code. This means 
that there are many possible correct object code versions of a single C language program. They 
may differ in the number and type of instructions used, which registers are used, how much data 
memory is used, how code is laid out, and other aspects as well.

A compiler can generate an assembly language listing file to help understand the code it has 
generated. The next section has an example in Listing 5.2. The professional version of the Keil 
MDK-​ARM IDE can generate such a listing, but the light version cannot.

A source file may refer to variables and functions defined in other files using external refer-
ences. Since at this point in the build process the addresses of these variables and functions 
haven’t been defined yet, the output assembly code file uses the symbols (text names) as 
placeholders.

Commonly used functions are often gathered together in a library to simplify their reuse. The 
C language defines many standard libraries, including common mathematical functions (math), 
input and output (stdio), string processing (string), time and date (time).

Assembler

An assembler converts a human-​readable assembly language module into an object module that 
describes the size and contents of the memory sections required for the module. Each memory 
section may hold instructions, data, or both. The assembler processes one .s file at a time. This 
file may have been written directly by a developer or created by a compiler. Keil µVision uses the 
armasm assembler [2].

The assembler steps through the input file one line at a time, though it may make multiple 
passes through the file. It uses a location counter for each memory section to track where to place 
(or allocate) the current memory item, and then updates the counter accordingly.
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Stack_​Size      	 EQU     0x00000400
                	 AREA    STACK, NOINIT, READWRITE, ALIGN=3
Stack_​Mem       	 SPACE   Stack_​Size
_​_​initial_​sp

                	 THUMB
; Vector Table Mapped to Address 0 at Reset
                	 AREA    RESET, DATA, READONLY
                	 EXPORT  _​_​Vectors
                	 EXPORT  _​_​Vectors_​End
                	 EXPORT  _​_​Vectors_​Size
_​_​Vectors       	 DCD     _​_​initial_​sp  ; Top of Stack
                	 DCD     Reset_​Handler  ; Reset Handler
                	 DCD     NMI_​Handler  ; NMI Handler
                	 DCD     HardFault_​Handler  ; Hard Fault Handler

                	 AREA    |.text|, CODE, READONLY
; Reset Handler
Reset_​Handler   	 PROC
                	 EXPORT  Reset_​Handler             [WEAK]
                	 IMPORT  SystemInit
                	 IMPORT  _​_​main
                	 LDR     R0, =SystemInit
                	 BLX     R0
                	 LDR     R0, =_​_​main
                	 BX      R0

                	 ENDP

Listing 5.1   �Example of assembly language file (filename suffix is .s).

Listing 5.1 shows part of an assembly language file. An assembly language file is made of several 
types of elements.

An instruction consists of a mnemonic and possibly operands, as described in the previous 
chapter. Upon seeing instruction CMP r1, #0x14, the assembler will generate the encoded Thumb 
instruction according to the ARM architecture specification [3] and advance the location counter. 
The CMP instruction will be encoded into a 16-​bit value:

•	 Bits 15 through 11 (the most-​significant bits) are set to 00101 to specify the CMP immediate 
instruction.

•	 Bits 10 through 8 are set to 001 to specify register r1.
•	 Bits 7 through 0 are set to 00010100 to specify an immediate data value of 0x14.

A directive directs the assembler to do something.

•	 AREA tells the assembler to place the next items declared in a given memory area and change 
to that area’s location counter.
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•	 SPACE tells the assembler to allocate space for data but not fill it with any specific data, and 
then advance the current location counter.

•	 Define constant data (DCD) tells the assembler to define a 32-​bit constant data item, placing 
that data in the next available memory location.

•	 EQU tells the assembler to define a temporary symbolic name and assign it a specific value, but 
not allocate any memory for it.

•	 Other common assembler directives are IMPORT, EXPORT, THUMB, PROC, ENDP, and DCB.

There are other elements in an assembly language file; some of the most common are these:

•	 A comment contains text that will be ignored by the assembler. Comments begin with a ; 
(semicolon).

•	 A symbol is a text name that represents a value. For example, Stack_​Size is a symbol.
•	 A label defines a symbol to refer to the current location in memory. For example, Stack_​Mem, 

_​_​initial_​sp, _​_​Vectors and Reset_​Handler are all labels.

symbol
Text name representing a value (e.g. address, data value) in a program

label
Symbol in assembly language which represents an address

The object code created by the assembler is not complete if it has any external references. The 
assembler will include a list of external references and the instructions that use them. The linker/​
loader will resolve these references later.

;;;57      do {
000078  bf00              NOP
                  |L1.122|
;;;58         x += 2;
00007a  1c89              ADDS     r1,r1,#2
;;;59       } while (x < 20); 
00007c  2914              CMP      r1,#0x14
00007e  d3fc              BCC      |L1.122|

Listing 5.2   �Assembly language listing file created by C compiler (filename suffix is .txt).

There are tools to disassemble object code into a listing file that shows additional information, 
such as encoded instructions. The compiler may also create an assembly language listing file to 
show the code it has generated for its source file. Listing 5.2 shows an example. The file is in a 
similar format to the assembly language file, but includes additional information:

•	 A numerical address (typically hexadecimal) is listed for each memory location. The address 
may be relative (an offset from the beginning of the module) or absolute (a fixed location in 
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memory). In Listing 5.2 the addresses are relative since linking (described in the next section) 
hasn’t been performed yet.

•	 The content of a memory location, shown as a hexadecimal value. For example, relative address 
0x00007e holds a value of 0xd3fc, which is the encoding of the instruction BCC |L1.122|. 
Contents that depend on external references will have placeholders because they are currently 
undefined.

Note that tools may use different names to refer to the same register. For example, r1 and R1 both 
refer to register one.

Linker/​Loader

A linker/​loader creates an executable file from multiple object files. These object files may 
come from modules in the source program or from libraries. The data and code objects are 
arranged in appropriate sections of memory. The linker can then determine the numerical 
addresses for variables and functions. These addresses are then used to complete the machine 
instructions that refer to the symbolic names. The resulting memory image is described in an 
executable file with the ARM ELF format and a filename suffix of .axf. Keil µVision uses the 
armlink linker [4].

Programmer

When the CPU is powered up or reset, it does not have an operating system to load a program 
into memory. The memory must already contain the program. The program memory is nonvolatile 
(typically Flash ROM), so it will retain its contents even after power is removed.

The programmer is a tool that places the program into the MCU’s memory according to 
the description in the executable file. The programmer has both hardware and software. The 
hardware is connected to the MCU’s serial wire debug (SWD) interface, enabling the MCU’s 
memory to be programmed. The software may be a stand-​alone program or it may be built into  
the IDE.

Debugger

The debugger enables the developer to control program execution and examine the program state 
(e.g. current instruction, values of processor registers, and data memory) as it runs on the pro-
cessor. Figure  5.2 shows an example of the debugger’s interface. The source code is shown in 
the central window (delay.c), while the corresponding object code is in the Disassembly window 
above. The Registers window to the left shows the values of the processor’s core registers. The Call 
Stack + Locals window on the lower right shows both the current subroutine call nesting and the 
values of those functions’ local variables.
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C Language Fundamentals

Program and Functions

A program is made of one or more functions, with each made of a series of statements. A func-
tion may take arguments (also called parameters) and may return a result value. A function may 
call other functions sequentially or in a nested (hierarchical) way. The function call graph is a 
diagram that shows possible function calls. In Figure 5.3 the main function calls functions J and K 
as subroutines, and J calls B as a subroutine.

call graph
Diagram showing subroutine calling relationships between functions in a program

subroutine
Program function which can be called by another function

Every C program must have a function called main. Running the program consists of running 
the main function. The main function for embedded systems software never completes, unlike a 
program you might run on your personal computer or smart phone.

Figure 5.2 � Debugger allows user to observe and control program execution, variables, and processor registers.
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Functions use a call stack to hold temporary information. Calling a function creates a new  
activation record (stack frame) on top of the stack. Returning from a function destroys that acti-
vation record, freeing up the space for future function calls. For example, when main is executing, 
the call stack holds the activation record for main. When J is executing, the call stack holds the 
activation records for J and main. After J completes and control returns to main, the activation 
record for J is removed from the call stack.

call stack
Stack of activation records/stack frames of functions which have started executing but have not yet completed

activation record
�Temporary storage in memory for function’s preserved registers, arguments, local variables, return address, etc. Exists only 
from function’s start to end. 

Start-​Up Code

When the CPU first starts running (e.g. after power-​up or reset) it will execute the code for the 
reset exception handler. This is called Reset_​Handler and is located in startup_​MKL25Z4.s. The 
MCU is not ready for the user’s main function yet and needs to be prepared.

First, some basic hardware settings may need to be configured. As with many other MCUs, the 
KL25Z MCU comes out of reset running in a low-​speed mode. To run at full speed, a high-​speed 
oscillator needs to be configured and selected after it has stabilized. The reset exception handler per-
forms this clock configuration by calling the function SystemInit (defined in system_​MKL25Z4.c).

Second, the runtime environment for the C program needs to be set up. For example, the stack 
pointer and variables need to be initialized. This is done in part by a runtime support function 
called _​_​scatterload, which also sets certain variables to their correct initial values. We will discuss 
this further later in this chapter.

After performing these steps, the CPU can start executing the code in the main function.

main

J K

B

void B(void) {
…

}

void J(void) {
…
B();
…

}

void K(void) {
…

}

void main(void) {
…
J();
…
K();
…

}

Figure 5.3 � Source code and function call graph shows calling relationships between functions.
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Types of Memory

We saw in Chapter 4 that a microcontroller may use several types of memory. We can classify 
memory based on certain key characteristics:

•	 Can we write data to the memory? If so, how easy is it to do?
•	 Is the memory volatile or persistent? Volatile memory loses its contents when power is removed, 

whereas persistent memory does not.
•	 Does the memory need to be refreshed periodically?

Read-​only memory (ROM) can only be read. It is nonvolatile (persistent) and retains its contents 
after power is removed. There are several types of ROM. The most basic ROM contains data that 
is specified when the IC is fabricated. Electrically erasable programmable ROM (EEPROM) can 
be erased and reprogrammed one location at a time. The erasing and programing operations take 
some time and may involve multiple steps. Flash EEPROM (typically called Flash or Flash ROM) 
allows an entire page of data to be erased or programmed at a time, saving time.

RAM is volatile and loses its contents when power is removed. There are two common types 
of RAM. Static RAM (SRAM) is built with digital latches, so it is fast and remembers data until 
power is removed. Dynamic RAM (DRAM) is built with a transistor acting like a capacitor, so it 
is slower and needs to be refreshed periodically. However, a DRAM cell is much smaller than an 
SRAM cell, so it is much less expensive.

MCUs typically have integrated Flash ROM and SRAM. Some may also have EEPROM to 
allow persistent storage of data that may need to change (e.g. configuration data). Some MCUs 
have (or can be configured to provide) address and data buses on their pins to allow external 
memory expansion. This allows external SRAM, DRAM, Flash ROM, and other devices to be 
added to the system. These MCUs typically also include DRAM memory refresh controllers.

A Program’s Memory Requirements

What memory does a program need? Let’s look at the several key characteristics of the information 
that will be stored in the memory.

•	 Does the information need to persist after power is removed? This information will need to be 
placed in ROM, EEPROM, or Flash ROM.

•	 Will the program only read the information? If so, this read-​only (RO) information can be 
placed in ROM, Flash ROM, or EEPROM. If the program changes the information, this read/​
write (RW) information will probably need to be placed in RAM.

•	 How long does the information need to exist? What is its lifetime? Information that must exist 
for the entire duration of the program must be given a permanent location in memory. This 
is called static data. Temporary information can be stored in read/​write memory that is reused 
by different parts of the program. The program can use two reusable memory sections. The 
call stack is used to automatically allocate space on function entry and deallocate (free) it on 
function exit. The heap is used for explicit dynamic memory allocation and deallocation; the 
programmer must manage these operations.
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Now we can look at the memory requirements of a C program. Figure 5.4 shows that data and 
instructions are allocated space in different memory areas.

Program instructions must be persistent and are generally read-​only, so they are typically placed 
in Flash ROM. However, some MCUs also provide a small section of read/​write memory to hold 
code that reprograms the Flash ROM when updating code.

Constant data values (c), data tables, text strings (“Hello!”), and similar read-​only items can 
be placed in Flash ROM.

Data variables can be read and written, so they must be placed in RAM. If a data variable is 
used only by a small part of the program, the compiler may optimize it by not allocating a memory 
location for it. Instead the compiler will just use a CPU register temporarily for the variable until 
the value is needed no more.

Data variables are handled differently based on whether they are initialized and whether they 
are statically allocated. Later in this chapter we will see how variables in memory are accessed.

•	 Initialization is done in one of two ways. Static data (d) has a fixed memory address, so it is 
initialized at program start-​up by copying the initial values from ROM. Automatically allocated 
data (e, f) is initialized by specific program instructions upon allocation, since the memory loca-
tion may be used for different data before this use.

•	 Uninitialized variables are handled in two ways. Uninitialized static variables (a, b) have fixed mem-
ory addresses and they are initialized to zero. Uninitialized automatically or dynamically allocated 
variables (e, f) have undefined values, as their memory may have been used previously by other data.

Making Functions

A function’s object code contains three sections. The prolog prepares the processor and memory, 
the body of the function performs the work specified by the source code’s function body, and the 
epilog cleans up, prepares the return value (if any), and returns control to the calling function.

int a, b;
const char c=123;
int d=31;
void main(void) {

int e;
char f[32];
e = d + 7;
a = e + 29999;
strcpy(f,“Hello!”);

}

RAM Flash ROM

Program .text

Initialization Data

Constant Data

Startup and 
Runtime Library 

Code

Heap Data

Initialized Data

Stack

Zero-Initialized 
Data

Figure 5.4 � RAM and ROM are used to hold a program’s data. Code is located in Flash ROM in the 
program.text or library regions.
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prolog
Initial code in function which preserves registers and prepares activation record 

�epilog
Final code in function which restores preserved registers, prepares return value, frees activation record and returns control to 
caller function

Register Use Conventions

The ARM architecture procedure calling standard (AAPCS) defines various behaviors, including 
how general-​purpose registers are shared between a function and a subroutine. The calling func-
tion expects some registers to be overwritten by the subroutine, whereas others (called preserved 
registers) are expected to retain their values. If the subroutine needs to use a preserved register, it 
needs to save the value before overwriting it. Before completing, the subroutine needs to restore 
the preserved register to its original value.

Figure 5.5 shows that a subroutine must preserve the value of registers r5 through r11. Registers 
r0 through r3 can be modified without the need to be restored. Registers r0 through r3 may also be 
used for arguments, and r0 and r1 may be used for a return value.

Function Arguments

The arguments (or parameters) for a subroutine are passed according to the AAPCS. Arguments 
may be passed by register or by memory. Using registers is much faster, so the compiler tries to pass 
arguments in registers when possible. However, there are only four 32-​bit registers available for 
argument use.

Register Description Symbol
On function exit, must be 
restored to original value?

Special use for 
subroutines?

Program Counter PC (R15) No No

Link Register LR (R14)
No Holds return address after 

BL, BLX instructions
Stack Pointer SP (R13) Yes Yes, points to top of stack

High general-purpose 
registers

R12 No No
R11 Yes No
R10 Yes No
R9 Yes No
R8 Yes No

Low general-purpose 
registers

R7 Yes No
R6 Yes No
R5 Yes No
R4 Yes No
R3 No Argument 4
R2 No Argument 3
R1 No Argument 2, result 2 
R0 No Argument 1, result 1

Figure 5.5 � Registers use conventions.
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Each argument is extended to be a multiple of four bytes long. Arguments are then assigned to 
registers starting with r0; 64-​bit arguments are allocated to even-​numbered registers. Remaining 
arguments are passed on the stack.

For example, consider a function with three arguments: char x, int y, and double z. Argument 
x is eight bits long because it is of type char, so is extended to 32 bits and uses r0. Argument y is  
32 ​bits long, so it uses r1 and does not need extension. Argument z is 64 ​bits long because it is a 
double precision float, so it uses r2 and r3. Now consider changing the order of the arguments to 
be char x, double z, and int y. Argument x is passed in r0, argument z is passed in r2 and r3, and 
argument y is passed on the stack.

Function Return Value

A function returns a value using r0, r1, or the stack. Return value types up to 32 bits use r0; shorter 
types are extended to 32 bits as mentioned earlier. Return value types up to 64 bits use r0 and r1, 
with shorter types extended. Longer types are returned on the stack.

Prolog and Epilog

In this section we will examine the prolog and epilog for the C function shown in Listing 5.3.
int fun4(char a, int b, char c) {
    int x[8];
    x[0] = a * b;
    x[c] = b;
    return a+b+c;
}

Listing 5.3 � Example source code.

Prolog

The prolog has several responsibilities, including saving preserved registers, setting up the 
activation record on the call stack, and initializing automatic variables when needed.

Registers r4 through r11 must be preserved across function calls, as specified in Figure 5.5. If the 
body of the function might use any of these registers, then the prolog will save these registers on 
the stack with a PUSH instruction. If the body of the function might make a subroutine call, then 
the return address in LR must also be saved. This is the address of the next instruction to execute 
in the calling function after the subroutine completes. In Listing 5.4, the PUSH instruction will 
save r4 and the link register on the stack.

                  fun4 PROC
;;;101    int fun4(char a, int b, char c) {
0000ba  b510              PUSH     {r4,lr}
0000bc  b088              SUB      sp,sp,#0x20
;;;102      int x[8]‌;

Listing 5.4 � Prolog code for function fun4 saves register r4 and link register, then allocates 32 bytes of 
space on call stack for integer array x.
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The prolog may allocate space on the stack for automatic variables. In Listing 5.4, the SUB 
instruction will grow the stack by subtracting 0x20 (32 decimal) from the stack pointer. This 
allocates the space needed for the automatic variable x, an array of eight integers. As each 
integer takes 4 bytes, 32 bytes are needed in total. Note that the compiler tries to promote vari-
ables from stack memory into registers, so some automatic variables will use only registers and 
no stack space.

Figure 5.6 shows how the PUSH and SUB instructions create the activation record on the stack.

Epilog

The epilog needs to place the return value (if present) in the correct location, restore preserved 
registers to their original values, and return control to the calling function.

When a subroutine is called, the return address is placed in the link register (LR) by the branch 
and link (BL) or branch and link and exchange (BLX) instruction. Control can be returned to the 
calling function by executing the BX LR instruction, resulting in a branch to the address stored 
in LR. However, if this subroutine has called another subroutine, then the first return address (in 
LR) will be overwritten by the second call. To prevent this, a subroutine that may call another 
subroutine will save the return address on the stack with a PUSH {LR} instruction. In this case, 
the return instruction will be POP {PC}, which pops the return address from the stack into the 
program counter. Note that if other registers were pushed onto the stack in the prolog, the POP 
instruction may have a list of multiple registers.
;;;105      return a+b+c;
0000ca  1840              ADDS     r0,r0,r1
0000cc  1880              ADDS     r0,r0,r2
;;;106    }
0000ce  b008              ADD      sp,sp,#0x20

Memory Address Contents Description

3. SP after SUB sp,sp,#0x20 → A – 0x28 x[0]

Array x

A – 0x24 x[1]

A – 0x20 x[2]

A – 0x1C x[3]

A – 0x18 x[4]

A – 0x14 x[5]

A – 0x10 x[6]

A – 0x0C x[7]

2. SP after PUSH {r4,lr} → A – 0x08 LR Return address

A – 0x04 r4 Preserved register

1. SP on entry to function, before PUSH {r4,lr} → A Caller’s stack frame

Figure 5.6 � Activation record creation.
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0000d0  bd10              POP      {r4,pc}
                           ENDP

Listing 5.5 � Epilog code for function fun4 computes return value, deallocates 32 bytes from stack, then 
restores original values of registers r4 and link register.

Listing 5.5 shows that the source code return statement is implemented with a two ADDS 
instructions that place the result (a+b+c) in r0. The next ADD instruction adds 0x20 (32 decimal) 
to the stack pointer to deallocate the space for the array x. The last instruction (POP) has two 
effects. First, it restores r4 to its original saved value, as required by the register use conventions. 
Second, it loads the PC with the saved value of the link register, which is the address of the 
instruction in the calling function that follows the subroutine call. After the POP instruction 
executes, the CPU will continue executing the calling function.

Figure 5.7 shows how the ADD and POP instructions delete the activation record from the stack.

Exception Handlers

The compiler generates code for exception handlers (including interrupt service routines) in a simi-
lar way to regular functions. The compiler identifies an exception handler with the _​_​irq qualifier in 
its declaration. There are three main differences between exception handlers and regular functions.

First, a handler must have no arguments or return values. The compiler will signal an error if 
a function declared with _​_​irq takes arguments or returns a value. Recall that the CMSIS sup-
port for an MCU declares standard names for the MCU’s exception handlers; these declarations 
include the _​_​irq qualifier.

Second, because the handler can execute anywhere in the program, all registers must be treated 
as preserved registers. When responding to an exception, the CPU automatically saves certain 
general-​purpose registers on the stack: r0, r1, r2, r3, and r12. The handler does not need to save 
the value of these registers. If the handler uses any other general-​purpose registers (r4 through 
r11), it will need to save their values upon entry and restore them before exiting. The C compiler 
generates prolog and epilog code for a handler that does this.

Memory Address Contents Description

1. SP before ADD sp,sp,#0x20 → A – 0x28 x[0]

Array x

A – 0x24 x[1]

A – 0x20 x[2]

A – 0x1C x[3]

A – 0x18 x[4]

A – 0x14 x[5]

A – 0x10 x[6]

A – 0x0C x[7]

2. SP after ADD sp,sp,#0x20 → A – 0x08 LR Return address

A – 0x04 Preserved register

3. SP after POP {r4,pc} → A Caller’s stack frame

r4

Figure 5.7 � Activation record deletion.
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Third, the handler must return using an instruction that triggers exception return processing.
There is no “return from interrupt” instruction for ARMv6-​M processors. Instead, we use an 

instruction to update the PC with a special exception return code (EXC_​RETURN) to trigger the 
CPU’s exception processing hardware and specify which stack pointer and processor mode to use. 
Recall that this code was loaded into the link register when first responding to an exception. If 
the exception return code is still in the link register, we use a branch indirect to the link register 
(BX LR). Otherwise the code was pushed onto the stack because the handler may have called a 
subroutine, so we need to pop the code from the stack into the PC.
                  PIT_​IRQHandler PROC
;;;15     
;;;16     void PIT_​IRQHandler() {
000000  b430              PUSH     {r4,r5}

; (handler body code here)

000086  bc30              POP      {r4,r5}
000088  4770              BX       lr
;;;61     
                          ENDP

Listing 5.6 � Prolog and epilog of exception handler.

Listing 5.6 shows the prolog and epilog of a timer peripheral’s ISR in assembly code. Note that 
registers r4 and r5 are preserved with a PUSH instruction. The body of the handler uses registers 
r0 through r5. The values of r4 and r5 are restored with the POP. The return from exception opera-
tion is performed by executing the BX lr instruction; this restores the values of r0 through r3 (as 
well as r12, LR, PC, and xPSR).

Controlling the Program’s Flow

In this section we examine the assembly code that implements the C control flow structures for 
conditionals and loops and subroutine calls.

Conditionals

The C language offers if/​else and switch code structures to select one of the multiple code blocks 
to execute.

If/​Else

  if (x){
     y++;
  } else {
    y-​-​;
  }

Listing 5.7 � C source code with if/​else statement.
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;;;39       if (x){
000056  2900              CMP      r1,#0
000058  d001              BEQ      |L1.94|
;;;40          y++;
00005a  1c52              ADDS     r2,r2,#1
00005c  e000              B        |L1.96|
                  |L1.94|
;;;41       } else {
;;;42         y-​-​;
00005e  1e52              SUBS     r2,r2,#1
                  |L1.96|
;;;43       }

Listing 5.8 � Assembly code listing for if/​else statement.

If/​else statements are simple, requiring a test, code for the true (if) case and code for the false 
(else) case. In Listing 5.7 the if statement tests the value of variable x. If x is nonzero, then the 
y++ statement is executed. If x is zero, then the y--​statement is executed. Listing 5.8 shows the 
assembly code generated by the compiler. Figure 5.8 shows the control flow of the assembly code. 
Register r1 holds the variable x.

•	 The CMP r1, #0 instruction (at address 000056) compares r1 with the immediate value zero 
and sets the processor’s condition code flags according to the result. If the two values (r1 and 
zero) are equal, then the Z flag will be set to one. Otherwise it will be cleared to zero.

•	 The BEQ |L1.94| instruction (at address 000058) will branch to label |L1.94| if the values 
are equal (since the Z flag is set). Otherwise the BEQ instruction will allow program execution 
to continue to the next instruction (at address 00005a).

;;;39 if (x){
CMP r1,#0
BEQ |L1.94|

|L1.96|
;;;43 }

;;;40 y++;
ADDS r2,r2,#1
B |L1.96|

|L1.94|
;;;41 } else {
SUBS r2,r2,#1

Figure 5.8 � Control flow of if/​else statement code.
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•	 The code for the true case starts at address 00005a. The ADDS r2, r2, #1 instruction adds one 
to r2, which is used for the variable y. The B |L1.96| instruction (at address 00005c) forces the 
program to branch to label |L1.96| to skip over the false case code.

•	 The code for the false case starts at address 00005e, which is also the value of label |L1.94|. 
The instruction SUBS r2, r2, #1 subtracts one from register r2, which is used for the variable y.

•	 The label |L1.96| marks the merge point of the if and else cases, and is the address of the first 
instruction after the if/​else statement.

Switch

  switch (x) {
  case 1:
    y += 3;
    break;
  case 31:
    y -​= 5;
    break;
  default:
    y-​-​;
    break;
  }

Listing 5.9 � C source code with switch statement.

Switch statements can be implemented in different ways. The approach shown in Listing 5.10 
performs a test for each case, similar to the if/​else structure. Other approaches are to use a jump 
table or a computed jump, which eliminate the need for multiple tests. Figure 5.9 shows the con-
trol flow of the assembly code.

;;;45       switch (x) {
000060  2901              CMP      r1,#1
000062  d002              BEQ      |L1.106|
000064  291f              CMP      r1,#0x1f
000066  d104              BNE      |L1.114|
000068  e001              B        |L1.110|
                  |L1.106|
;;;46       case 1:
;;;47         y += 3;
00006a  1cd2              ADDS     r2,r2,#3
;;;48         break;
00006c  e003              B        |L1.118|
                  |L1.110|
;;;49       case 31:
;;;50         y -​= 5;
00006e  1f52              SUBS     r2,r2,#5
;;;51         break;
000070  e001              B        |L1.118|
                  |L1.114|
;;;52       default:
;;;53         y-​-​;
000072  1e52              SUBS     r2,r2,#1



Chapter 5:  C in Assembly Language 137

137

;;;54         break;
000074  bf00              NOP
                  |L1.118|
000076  bf00              NOP                            ;48

;;;55       }

Listing 5.10 � Assembly code listing of switch statement.

There are three different cases based on the value of x: a case for 1, a case for 31, and a default 
case. The code starts by comparing x to each of the values.

•	 The instruction CMP r1, #1 (at address 000060) compares x to 1.
•	 If they are equal, then the BEQ |L1.106| instruction (at address 000062) causes the program 

to branch to the corresponding case code at label |L1.106| (at address 00006a).
•	 If r1 is not equal to 1, then the code will continue with the next test instruction: CMP r1, #0x1f 

(at address 00006e), and #0x1f is the immediate value of 31 represented in hexadecimal.
•	 If they are not equal, then the BNE |L1.114| instruction (at address 000066)  causes the 

program to branch to the default case code at label |L1.114| (at address 000072).

|L1.118|
NOP ;48
;;;55 }

;;;45 switch (x) {
CMP r1,#1
BEQ |L1.106|

CMP r1,#0x1f
BNE |L1.114|

B |L1.110|

|L1.106|
;;;46 case 1:
;;;47 y += 3;
ADDS r2,r2,#3
;;;48 break;
B |L1.118|

|L1.110|
;;;49 case 31:
;;;50 y -= 5;
SUBS r2,r2,#5
;;;51 break;
B |L1.118|

|L1.114|
;;;52 default:
;;;53 y--;
SUBS r2,r2,#1
;;;54 break;
NOP

Figure 5.9 � Control flow of switch statement code.
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•	 If r1 is equal to 31, then the code will continue with the next instruction, which is B |L1.110| 
(at address 000068). This will cause the program to jump to label |L1.110| (at address 00006e) 
and execute the code starting there.

•	 The code for each of the cases is similar. First, register r2 (holding the variable y) is modified. 
Then the program unconditionally branches to the merge point of |L1.118| (at address 
000076) because of the break statement. The last case does not need such a branch case because 
the execution will naturally proceed to the merge point. A  NOP instruction is added as a 
placeholder for debugging at address 000074.

Loops

Code structures for loops include a loop body and a loop test. The test may be performed before 
the body is executed (top-​test) or after (bottom-​test).

Do While

The do/​while loop is simple, executing the loop body first (adding 2 to x) and then testing whether 
to repeat the body (if x < 20). The assembly code is shown in Listing 5.12, whereas Figure 5.10 
shows the control flow.

  do {
    x += 2;
  } while (x < 20);

Listing 5.11 � C source code with do/​while loop.

;;;57      do {
000078  bf00              NOP
                  |L1.122|
;;;58         x += 2;
00007a  1c89              ADDS     r1,r1,#2
;;;59       } while (x < 20);
00007c  2914              CMP      r1,#0x14

00007e  d3fc              BCC      |L1.122|

Listing 5.12 � Assembly code of do/​while loop.

•	 A NOP instruction (address 000078) serves as a placeholder for debugging.
•	 The body of the loop adds 2 to x using the instruction ADDS r1, r1, #2 (address 00007a).
•	 The loop test starts by comparing x to 20 (hexadecimal 0x14) using CMP r1, #0x14 (address 

00007c). This instruction checks for the result of subtracting r1 from 20, but doesn’t update r1. 
Instead, it only updates the condition code flags.

•	 The loop test then can branch back to the loop body or else continue with the next instruction. 
If x is less than 20, then the comparison mentioned does not result in a borrow (indicated by 
the carry flag), so the C flag will be zero. Branch if carry cleared (BCC) performs a branch if the 
carry bit is cleared (zero). If x is not less than 20, then the C flag will be one, so the BCC will 
not execute, and the program will proceed to the next instruction after the loop.
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While

The while loop’s assembly code appears in Listing 5.14, and Figure 5.11 shows the control flow. 
The while loop performs the test first, and then executes the loop body. However, the code is laid 
out in a different order. The start of the loop has a branch over the loop body to the test at the 
end. So the loop test is executed first, before the body has a chance to execute.

  while (x > 10) {
    x = x + 1;
  }

Listing 5.13 � C source code with while loop.

;;;61       while (x/​green>
000080  e000              B        |L1.132|
                  |L1.130|
;;;62         x = x + 1;
000082  1c49              ADDS     r1,r1,#1
                  |L1.132|
000084  290a              CMP      r1,#0xa               ;61
000086  d3fc              BCC      |L1.130|

;;;63       }

Listing 5.14 � Assembly code listing of while loop.

•	 B |L1.132| (at address 000080) branches to label |L1.132|, which is the start of the loop test.
•	 The loop test starts at |L1.132|. Instruction CMP r1, #0xa (address 000084) compares r1 to 10 

(0xa in hexadecimal) and sets the condition code flags according to the result.
•	 If r1 is less than 10, then the Carry flag will be cleared, so BCC |L1.130| (address 000086) will 

cause the program to branch to that label.
•	 The loop body starts at label |L1.130| with the instruction ADDS r1,r1,#1 (address 

000082) that adds 1 to register r1 (holding variable x).

;;;57 do {
NOP

|L1.122|
;;;58 x += 2;
ADDS r1,r1,#2
;;;59 } while (x<20);
CMP r1,#0x14
BCC |L1.122|

Figure 5.10 � Control flow of do/​while loop.



Embedded Systems Fundamentals with ARM Cortex-M based Microcontrollers: A Practical Approach140

140

For

The for loop is the most complex loop. It contains initialization code (i = 0) that executes before 
the loop starts, a loop test (i < 10), the loop body (x + = i), and loop index update code (i++). The 
assembly code appears in Listing 5.16, while Figure 5.12 shows the control flow.

  for (i = 0; i < 10; i++){
    x += i;
  }

Listing 5.15 � C source code with for loop.

;;;65       for (i = 0; i < 10; i++){
000088  2300              MOVS     r3,#0
00008a  e001              B        |L1.144|
                  |L1.140|
;;;66         x += i;
00008c  18c9              ADDS     r1,r1,r3
00008e  1c5b              ADDS     r3,r3,#1              ;65
                  |L1.144|
000090  2b0a              CMP      r3,#0xa               ;65
000092  d3fb              BCC      |L1.140|

;;;67       }

Listing 5.16 � Assembly code listing of for loop.

;;;61 while (x<10) {
B |L1.132|

|L1.132|
CMP r1,#0xa ;61
BCC |L1.130|
;;;63 }

|L1.130|
;;;62 x = x + 1;
ADDS r1,r1,#1

Figure 5.11 � Control flow of while loop.
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•	 The loop initialization code (i = 0) is performed by MOVS r3,#0 (address 000088). Register r3 
holds variable i, which serves as a loop counter. The code then branches to the loop test with 
the instruction B|L1.144| (address 00008a).

•	 The loop test code is marked with label |L1.144| and starts with instruction CMP r3,#0xa 
(address 000090). This compares the loop counter i (r3) with 10 (hexadecimal 0xa). The 
branch instruction BCC |L1.140| will branch to the loop body if r3 is less than 10.

•	 The loop body code is marked with label |L1.140|. It uses the instruction ADDS r1, r1, r3 
(address 00008c) to add i to x.

•	 The loop index update code follows the loop body. It uses the instruction ADDS r3, r3, #1 
(address 00008e) to add one to the variable i.

Note that the code is laid out in the sequence of initialization code, loop body, loop index update, 
and test. However, it is executed in a different order, with the test performed before the loop body.

Calling Subroutines

Calling a subroutine requires preparing the arguments (if any) and then calling the subroutine. 
After the return, the result value (if any) can be used. Let’s consider the C source code shown 
in Listing 5.17, which shows main calling fun5 as a subroutine. The function fun5 has four argu-
ments: one char (a), two ints (b, c), and another char (d). The assembly code is presented in 
Listing 5.18.

|L1.144|
CMP r3,#0xa ;65
BCC |L1.140|
;;;67 }

;;;65 for (i=0; i<10; i++){
MOVS r3,#0
B |L1.144|

|L1.140|
;;;66 x += i;
ADDS r1,r1,r3
ADDS r3,r3,#1 ;65

Figure 5.12 � Control flow of for loop.
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extern int fun5(char a, int b, int c, char d);
int main(void)
{
 int n;
 n = fun5(1,2,3,4);
}

Listing 5.17 � C source code calling function fun5 as subroutine.

;;;16               n = fun5(1,2,3,4);
00001a  2304              MOVS     r3,#4
00001c  2203              MOVS     r2,#3
00001e  2102              MOVS     r1,#2
000020  2001              MOVS     r0,#1
000022  f7fffffe            BL       fun5
000026  9000              STR       r0,[sp,#0]

Listing 5.18 � Assembly code calling function fun5 as subroutine.

First the arguments are loaded into the appropriate registers: r0 for argument a, r1 for b, r2 for 
c, and r3 for d. The arguments are loaded in reverse order, but any order would work.

Second, the subroutine is called either with BL or BLX instruction. The BL instruction contains 
the address of the subroutine. The BLX instruction needs the subroutine’s address to be loaded 
into register r0. Both of these instructions will place the address of the following instruction in the 
LR to allow the subroutine to return control to the calling function. Listing 5.18 shows that the 
subroutine is called with the instruction BL fun5 (at address 000022).

Third, after fun5 completes its returns control to main, its result will be in r0. The instruction STR 
r0, [sp,#0] (at address 000026) stores that result to the memory for the main’s automatic variable n.

Accessing Data in Memory

Let’s see how to access data in memory. A data variable must be in a register in order for the 
program to operate on it. The access method depends on the variable’s location (e.g. static mem-
ory vs. on the stack) and other factors (e.g. using pointers, whether in an array).

Statically Allocated Memory

A variable in a statically allocated memory can be anywhere in the CPU’s 32-​bit memory space, so 
we need 32 bits to specify its address. There is not enough space to hold both a 32-​bit address and an 
operation specifier in a Thumb instruction, since most are 16 ​bits long (with a few being 32 ​bits long).

To solve this problem, we take advantage of the program-​counter-​relative addressing mode. 
The variable’s address is stored in memory near the instructions that need it. The program uses an 
LDR instruction to load a register with the variable’s address. The program then uses that register 
to specify the memory location.
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                                          AREA ||.text||, CODE, READONLY, ALIGN=2
;;;20  	 siA = 2;
00000e 2102     	 MOVS    r1,#2
000010 4a49     	 LDR    r2,|L1.312|
000012 6011     	 STR    r1,[r2,#0]  ; siA
;;;21  	 aiB = siC + siA;
000014 4949     	 LDR    r1,|L1.316|
000016 6809     	 LDR    r1,[r1,#0]  ; siC
000018 6812     	 LDR    r2,[r2,#0]  ; siA
00001a 1889     	 ADDS    r1,r1,r2
00001c 9103     	 STR    r1,[sp,#0xc]
; Pointers to static data 

      	 |L1.312|
        			   DCD    ||siA||
      	 |L1.316|
        			   DCD    ||siC||
; Static data 
        				    AREA ||.data||, DATA, ALIGN=2
      	 ||siA||
        				    DCD    0x00000000
      	 ||siC||
        				    DCD    0x00000003

Listing 5.19 � Code to access variables in statically allocated memory.

For example, the code in Listing 5.19 first assigns a value of 2 to static integer siA, and then 
reads the values of siC and siA. The variables siA and siC are allocated space in the data memory 
section with the DCD assembler directives.

Automatically Allocated Memory

Automatically allocated variables are stored on the stack. Each such variable is located in memory 
at a specific offset from the stack pointer. This sp-​relative addressing mode is specified in assembly 
code as [sp, #offset]. The offset ranges from 0 to 1020 and must be a multiple of four.

;;;14   void static_​auto_​local( void ) {
000000 b50f     	 PUSH     	  {r0-​r3,lr}
;;;15  	 int aiB;
;;;16  	 static int siC=3;
;;;17  	 int * apD;
;;;18  	 int aiE=4, aiF=5, aiG=6;
000002 2104     	 MOVS    	 r1,#4
000004 9102     	 STR    	 r1,[sp,#8]
000006 2105     	 MOVS    	 r1,#5
000008 9101     	 STR    	 r1,[sp,#4]
00000a 2106     	 MOVS    	 r1,#
600000c 9100     	 STR    	 r1,[sp,#0]

Listing 5.20 � Code to access variables in automatically allocated memory.
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The three store instructions in Listing 5.20 initialize the variables aiE, aiF, and aiG in memory 
at specific offsets from the stack pointer. The activation record on the stack is shown in Figure 
5.13.

Dynamically Allocated Memory and Other Pointers

A pointer variable holds the address of a data item, such as another data variable. Pointers are used 
to access memory that is dynamically allocated (using malloc, calloc, or realloc).
;;;22       apD = & aiB;
00001e  a803              ADD      r0,sp,#0xc
;;;23       (*apD)++;
000020  6801              LDR      r1,[r0,#0]
000022  1c49              ADDS     r1,r1,#1
000024  6001              STR      r1,[r0,#0]

Listing 5.21 � Code to access a variable using a pointer.

The statement apD = & aiB loads the address of the variable aiB into the variable apD. Listing 
5.21 shows how this is implemented in assembly code. The variable aiB is located at the location 
SP+0x0c, as shown in Figure 5.13. The instruction at address 00001e calculates this address by 
adding SP and 0x0c and then places the result in r0, which holds apD and serves as a pointer 
to aiB.

The statement (*apD)++ will increment the variable pointed to by apD. This is performed in 
three steps:

•	 The LDR instruction (address 000020) loads r1 with the memory value to which apD points 
(which is aiB),

Address Contents Description

SP aiG

Automatic variables
SP + 0x04 aiF

SP + 0x08 aiE

SP + 0x0c aiB

SP + 0x10 r0

Preserved registers
SP + 0x14 r1

SP + 0x18 r2

SP + 0x1c r3

SP + 0x20 LR Return address

SP + 0x24 Caller’s stack frame

Figure 5.13 � Contents of activation record.
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•	 The ADDS instruction (address 000022) adds one to r1
•	 The STR instruction (address 000024) stores r1 back to memory via pointer apD.

Array Elements

In order to access an array element, its address must be determined, which is the sum of the array’s 
starting address and an offset. For a one-​dimensional array, the offset is the product of the element 
size (in bytes) and index of the particular element. For a two-​dimensional array, the offset must 
also include the size of rows before the desired element’s row.

Let’s look at the one-​dimensional array declared as unsigned char buff2[3]‌. This array of 
characters has three elements. Each element is a character, so each takes one byte. The entire 
array takes three bytes and is laid out in memory as shown in Figure 5.14.

;;;72   unsigned int arrays(unsigned char n, unsigned char j) {
00009c b508     	 PUSH    	 {r3,lr}
00009e 4602     	 MOV    	 r2,r0
;;;73  volatile unsigned int i;
;;;74  
;;;75  i = buff2[0]‌ + buff2[n];
0000a0 4827     	 LDR    	 r0,|L1.320|
0000a2 7800     	 LDRB    	 r0,[r0,#0]  ; buff2
0000a4 4b26     	 LDR    	 r3,|L1.320|
0000a6 5c9b     	 LDRB    	 r3,[r3,r2]
0000a8 18c0     	 ADDS    	 r0,r0,r3
0000aa 9000     	 STR    	 r0,[sp,#0]
; Static data
     			   |L1.320|
      	 DCD    	 buff2

Listing 5.22 � Code to access and add two elements in a one-​dimensional array.

The code to add two elements in the array (buff2[0]‌ and buff2[n]) is shown in Listing 5.22 and 
explained in Figure 5.15.

Now let’s look at the two-​dimensional array declared as short int buff3[5]‌[7]. This array of  
short integers has five rows and seven columns, with seven elements per column. Each element is 
a short integer, so each takes two bytes. The entire array takes 2 × 5 × 7 = 70 bytes and is laid out 
in memory as shown in Figure 5.16.

Address Contents

buff2 buff2[0]

buff2 + 1 buff2[1]

buff2 + 2 buff2[2]

Figure 5.14 � Memory layout of array declared as unsigned char buff2[3]‌.
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The code to add the element buff3[n]‌[j] to variable i is shown in Listing 5.23. The element’s 
address is calculated based on several parts: the array’s starting address, the row offset (based on 
the row size and the row number), and the column offset (based on the column number and the 
element size). Each instruction in the code is explained in Figure 5.17.

;;;76  i += buff3[n]‌[j];
0000ac 200e     	 MOVS    	 r0,#0xe
0000ae 4350     	 MULS    	 r0,r2,r0
0000b0 4b24     	 LDR    	 r3,|L1.324|
0000b2 18c0     	 ADDS    	 r0,r0,r3
0000b4 004b     	 LSLS    	 r3,r1,#1
0000b6 5ac0     	 LDRH    	 r0,[r0,r3]
0000b8 9b00     	 LDR    	 r3,[sp,#0]
0000ba 18c0     	 ADDS    	 r0,r0,r3
0000bc 9000     	 STR    	 r0,[sp,#0]
; Static data
     	 |L1.324|
      	 DCD    	 buff3

Listing 5.23 � Code to access element in two-​dimensional array.

Instruction Description

00009c PUSH {r3,lr} This instruction saves r3 and the return address on the stack.

00009e MOV r2,r0 The parameter n is passed into the function through register 0. This instruction  
copies that value into register r2, freeing up r0 for other use.

0000a0 LDR r0,|L1.320|
The starting address of the array buff2 is loaded into register r0.

0000a2 LDRB r0,[r0,#0]

The code needs to calculate the offset of each element from the array’s starting 
address (buff2). Because the first element is a constant (zero), the offset will be a 
constant which the compiler can calculate. This simplifies the assembly code. 
Element 0 is located at an offset of 1 byte/element * 0 elements = 0 bytes. So the  
address of buff2[0] is buff2 + 0, or simply buff 2. This instruction reads a byte from  
memory at location r0 and places the result in r0.

0000a4 LDR r3,|L1.320| The starting address of the array buff2 is loaded into register r3 with this  
instruction.

0000a6 LDRB r3,[r3,r2]
The offset of buff2[n] is 1 byte/element * n elements = n bytes. The address of 
buff2[n] is therefore buff2 + n. This instruction reads a byte from memory at  
location r3+r2 and places the result in register r3.

0000a8 ADDS r0,r0,r3 This instruction adds r0 (element buff2[0]) and r3 (element buff2[n]) and places the 
result in r0.

0000aa STR r0,[sp,#0] This instructionstores the sum on the stack at offset 0.

Figure 5.15 � Explanation of code implementing i = buff2[0]‌ + buff2[n].
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Address Contents Comment
buff3 buff3[0][0] Row 0

buff3 + 1

buff3 + 2 buff3[0][1]

buff3 + 3

(etc.)

buff3 + 10 buff3[0][5]

buff3 + 11

buff3 + 12 buff3[0][6]

buff3 + 13

buff3 + 14 buff3[1][0] Row 1

buff3 + 15

buff3 + 16 buff3[1][1]

buff3 + 17

buff3 + 18 buff3[1][2]

buff3 + 19

(etc.)
buff3 + 68 buff3[4][6] Row 4
buff3 + 69

Figure 5.16 � Memory layout of array declared as short int buff3[5]‌[7].

Instruction Description

0000ac MOVS r0,#0xe The row size is two bytes/element * 7 elements per row = 14 bytes. This instruction
loads the hexadecimal value 0xe (which is decimal 14) into r0. 

0000ae MULS r0,r2,r0 The row offset is the row size multiplied by the row number (n, which is still in r2). 
This instruction calculates the row offset. 

0000b0 LDR r3,|L1.324|
The starting address of the array buff3 is loaded into register r3 with this 
instruction.

0000b2 ADDS r0,r0,r3
The starting address (r3) and the row offset (r0) are added with this instruction and
placed back in r0.

0000b4 LSLS r3,r1,#1

The column offset is element’s column number multiplied by the number of bytes 
per element (two). The column number j is passed as an argument through r1. It is 
multiplied by two by shifting it left by one bit position with this instruction and  
stored in r3.

0000b6 LDRH r0,[r0,r3]
The array element’s address is the sum of the base address and the row offset (in 
r0) and the column offset (in r3), and is formed with [r0,r3]. The halfword at that  
address is loaded into register r0.

0000b8 LDR r3,[sp,#0]
Register r3 is loaded with the value of variable i, which is located on the stack at 
offset 0.

0000ba ADDS r0,r0,r3 The array element and i are added together and placed in r0.

0000bc STR r0,[sp,#0] The sum calculated above is stored to the memory location for variable i.

Figure 5.17 � Explanation of code implementing i += buff3[n]‌[j].
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Summary

In this chapter, we have examined the assembly code that the compiler generates to implement 
the C language source program. We examined the program build tools, which translate program 
modules between languages and then link them together. We then saw how functions are built 
from a prolog, an epilog, and a body with control flow and data access operations. We also evalu-
ated how exception handlers differ from regular functions.

Exercises

Consider the following assembly code that the compiler has generated for a C function. Explain 
what each assembly instruction does and describe what data is in any registers used.

Assembly code listing Explanation

1. ;;;5         void fn(int8_​t * a, int32_​t * 
b, float * c) {
000000   b5f0       PUSH   {r4-​r7,lr}

2. 000002   b085       SUB    sp,sp,#0x14

3. 000004   4604       MOV    r4,r0

4. 000006   460d       MOV    r5,r1

5. 000008   4616       MOV    r6,r2

6. ;;;6          volatile int8_​t a1, a2;
;;;7          volatile int32_​t b1, b2;
;;;8          volatile float c1, c2;
;;;9
;;;10         a1 = 15;
00000a   270f       MOVS   r7,#0xf

7. ;;;11         a2 = -​14;
00000c   200d       MOVS   r0,#0xd

8. 00000e   43c0       MVNS   r0,r0

9. 000010   9004       STR    r0,[sp,#0x10]

10. ;;;12         *a = a1*a2;
000012   9804       LDR    r0,[sp,#0x10]

11. 000014   4378       MULS   r0,r7,r0

12. 000016   b240       SXTB   r0,r0

13. 000018   7020       STRB   r0,[r4,#0]

14. ;;;13
;;;14         b1 = 15;
00001a   200f       MOVS   r0,#0xf

15. 00001c   9003       STR    r0,[sp,#0xc]
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Assembly code listing Explanation

16. ;;;15         b2 = -​14;
00001e   200d       MOVS   r0,#0xd

17. 000020   43c0       MVNS   r0,r0

18. 000022   9002       STR    r0,[sp,#8]

19. ;;;16         *b = b1*b2;
000024   9902       LDR    r1,[sp,#8]

20. 000026   9803       LDR    r0,[sp,#0xc]

21. 000028   4348       MULS   r0,r1,r0

22. 00002a   6028       STR    r0,[r5,#0]

23. ;;;17
;;;18         c1 = 15;
00002c   4809       LDR    r0,|L1.84|

24. 00002e   9001       STR    r0,[sp,#4]

25. ;;;19         c2 = -​14;
000030   4809       LDR    r0,|L1.88|

26. 000032   9000       STR    r0,[sp,#0]

27. ;;;20         *c = c1*c2;
000034   9900       LDR    r1,[sp,#0]

28. 000036   9801       LDR    r0,[sp,#4]

29. 000038   f7fffffe   BL      _​_​aeabi_​fmul

30. 00003c   6030       STR    r0,[r6,#0]

31. ;;;21
;;;22       }
00003e   b005       ADD    sp,sp,#0x14

32. 000040   bdf0       POP    {r4-​r7,pc}
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Overview

This chapter presents the concepts and methods that enable the interfacing of a digital micro-
controller with analog circuitry. It covers quantization and sampling concepts, and then presents 
digital-​to-​analog conversion and the reverse. We examine examples such as waveform generation, 
temperature measurement, and proximity sensing using infrared energy.

Introduction

Motivation

Embedded computers often need to monitor the characteristics of the surrounding environment, 
such as sound, temperature, pressure, acceleration, strain, and light intensity. These character-
istics are analog because they can take on an infinite number of possible values (even within a 
limited range). For example, a temperature sensor might indicate its reading by setting its output 
signal’s voltage to 0.05 V per degree C. A reading of 0.5 V would indicate a temperature of 10°C, 
whereas a reading of 0.50005 V would indicate 10.001°C. This analog signal must be converted 
to a digital (numerical) value for the program to process it; this is done with an analog-​to-​digital 
converter (ADC). Whether the ADC will be able to differentiate between these two temperatures 
depends on its resolution and other factors.

In order to generate sounds accurately (with little distortion), the MCU must generate analog 
voltage signals to drive headphones or speakers. The digital values representing the sound signal 
can be converted to an analog voltage using a digital-​to-​analog converter (DAC).

Concepts

Interfacing with analog devices involves quantization and sampling. To understand these con-
cepts, let us consider how to generate a sound using an MCU and a speaker. We would like to drive 
the speaker with the signal shown in Figure 6.1. This signal varies continuously in both voltage 
and time, but an MCU cannot generate such a signal accurately for two reasons. First, there are 
quantization issues: the MCU is digital so it can generate only a limited (discrete) number of volt-
ages on an output. Second, there are sampling issues: the MCU can update an output only at a 
limited rate, with some minimum time between updates. Our MCU’s approximation of the desired 
output is limited by both quantization and sampling characteristics. These limits affect both digi-
tal signal processing [1] and digital control systems [2].

quantization
Process of selecting a discrete digital value to represent an analog value

sampling
Process of converting a continuous-​time signal to a series of discrete-​time samples
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Quantization

In Chapter 2 we learned about the digital general-​purpose outputs of the MCU. If we use such an 
output in order to generate the sine wave, we will get the signal labeled “two-​level quantization” 
shown in Figure 6.2. This is a rather inaccurate reconstruction of our desired sine wave.

The problem is that our output can generate only two possible voltage levels. If our MCU could 
generate more than two different voltage levels, then our output sine wave would be more accu-
rate. The number of discrete values available for use defines the resolution of the quantization. In 
Figure 6.2, the signal labeled “eight-​level quantization” shows the sine wave when generated with 
eight quantization levels.

An analog value can take on an infinite number of possible values along a continuous range. 
Quantization is the process of selecting one of multiple possible quantized (discrete) values to rep-
resent the analog value. Each quantized output value represents a range of possible analog input 
values. Figure 6.3 shows an example of quantization, identifying which output value represents 
each range of input values. For example, any voltage between 0.5 V and 0.75 V will be quantized 
to 2. The same code will be returned for 0.51 V and 0.74 V, making them indistinguishable to 
the MCU.

Two voltage references (V+ref and V–​ref) are needed to define the boundaries of the conversion 
range. Often the positive supply rail (e.g. 3.3V) is used as the positive reference and ground is used 
as the negative reference.

Digital electronics work with binary values, so the number of discrete output values is typically 
a power of 2. The resolution describes the number of bits (B) used to hold the output value. For 
example, a code with eight-​bit resolution has 28 = 256 possible output values. The example in 
Figure 6.3 shows a two-​bit quantization.

Note that an output value n does not represent an exact voltage, but instead a range of 
voltages:

	 V
n

V VBrange ref ref= −( )+ −2
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Figure 6.1	 Sine wave signal has analog (continuous) voltage that varies continuously over time.
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As the resolution B increases, the quantization becomes more accurate. The maximum quantiza-
tion error is typically half of this voltage range.

A transfer function defines the quantization mathematically. The following is an example of a 
common transfer function:

	 n
V V

V V
B=

−
−







−

+ −

round in ref

ref ref

2

transfer function
Mathematical equation describing relationship between input and output values

Input Voltage Quantized Value

Decimal Binary

V+ref =1 V
3 11 Out of range

3 11
0.75 V

2 10
0.5 V

1 01
0.25 V

0 00
V-ref = 0 V

0 00 Out of range 

Figure 6.3	 Example of two-​bit quantization of analog input voltage.
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Figure 6.2	 More quantization levels improves accuracy of generated sine wave.
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Sampling

We have just seen that better resolution for quantization improves our MCU’s output signal accu-
racy. The other factor we need to consider is time: how often do we need to update an output or 
sample an input to get an adequate signal?

A sampled signal is a discrete-​time representation (a series of individual samples) of a continuous-​
time signal. The sampling rate determines how often an input is measured, or how often an output 
is updated. Note that each sample may be an analog value (one of an infinite number of possible 
values) until it is quantized.

Any information between the samples is lost. Figure 6.4 shows that sampling the sine wave at 
a low frequency (slow sampling) results in a poor approximation. Raising the sampling rate (fast 
sampling) improves the approximation.

If the continuous-​time signal changes more often than it is sampled, we will lose that high-​
frequency information. To understand this, let us consider the signal’s frequency spectrum. 
Figure 6.5 shows the spectrum of a signal, with the horizontal axis representing frequency and the 
vertical axis showing power. The spectrum is symmetric across the 0 Hz frequency.

Sampling a signal in effect makes copies of the signal’s spectrum centered at multiples of the 
sampling frequency fs, as shown in Figure 6.6. The Nyquist criterion states that if the signal has 
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Figure 6.4	 Faster sample rate improves accuracy of generated sine wave.
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Figure 6.5	 Signal spectrum shows distribution of power across frequencies.
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any energy at a frequency of fs/​2 or higher, those signal components will appear in the sampled 
signal at different (lower) frequencies, distorting the sampled signal with aliasing.

aliasing
Distortion of signal resulting from sampling at too low a frequency

Two complementary methods are used to prevent aliasing. First, the sampling frequency fs is 
chosen to be more than twice the frequency of the highest signal frequency of interest fh as shown 
in Figure 6.7. Second, a low-​pass anti-​aliasing filter is used to remove or greatly weaken the signal 
components above fh. In order to simplify the design of the anti-​aliasing filter, the sampling fre-
quency fs is often double fh or more.

Digital-​to-​Analog Conversion

Concepts

A digital-​to-​analog converter (DAC) generates an analog output signal based on the digital input 
value. The output signal may be a voltage or a current depending on the type of DAC. Here we 
will only consider voltage output DACs.

The minimum and maximum output voltages are defined by the DAC’s lower and upper refer-
ence voltages. The lower reference voltage is often simply grounded at 0 V.

Frequency

0 Hz fS/2 fS-fS -fS/2 -fh
fh

Figure 6.7	 Raising sampling frequency fs above signal’s highest frequency component fh eliminates 
aliasing.

Frequency
0 Hz fS/2-fS/2 fS-fS

Aliasing Aliasing

Figure 6.6	 Sampling too slowly causes aliasing.
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A transfer function defines the relationship between the digital input value n and the output 
voltage Vout. For a DAC with a lower reference voltage of 0 V, an upper reference voltage of V+ref, 
and B bits of resolution, the general transfer function is:

	 V n
V

Bout
+ref=
2

Converter Architectures

Two common DAC architectures are the resistor ladder and the R-​2R ladder. An N-​bit resis-
tor ladder uses 2N resistors of equal value connected in series between the upper and lower 
reference voltages. These resistors form a voltage divider with equally spaced voltages at the 
taps. An R-​2R resistor ladder uses N resistors of one value (R) and N resistors of twice that 
value (2R).

Regardless of the type of DAC, an amplifier is typically used to buffer the output signal, enabling 
it to drive larger loads. This buffer amplifier is often located on-​chip with the DAC to simplify 
application hardware design.

It is also possible to use a timer peripheral in pulse-​width modulation (PWM) mode and a low-​
pass filter to create an analog output. We will discuss this in Chapter 7.

Kinetis KL25Z DAC

The Kinetis KL25Z has a 12-​bit DAC, shown in Figure 6.8. There are two upper reference volt-
ages available, and the lower reference voltage is connected to ground. An amplifier buffers the 
voltage output signal.

The control register DACx_​C0 is shown in Figure 6.9 and controls various aspects of the DAC. 
There are other control registers (DACx_​C1 and DACx_​C2) that enable other operation modes 
using direct memory access (DMA), but we do not discuss them further.

•	 The DAC is enabled by writing a one to DACEN in DACx_​C0.
•	 The output buffer’s power consumption can be reduced by writing a one to LPEN in DACx_​

C0, at the cost of increasing the output’s response time.
•	 The upper reference voltage can be connected to one of the two sources (VREFH, VDDA) using a 

multiplexer controlled by the DACRFS field in DACx_​C0.

Output data for the DAC is 12 ​bits long and is stored in the DACDAT register. The output data’s 
upper four bits (nibble) are written to DACx_​DAT0H, while the lower byte is written to DACx_​
DAT0L.

The transfer function is similar to the general DAC transfer function, with an offset of one 
added to n. This offset allows the output voltage to range from V+ref/​4096 to V+ref .

	 V n
V

out
ref= +( ) +1

212
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The DAC also offers a buffered output mode. In this mode, new data can be written to DACx_​
DAT0H and DACx_​DAT0L. However, the DAC continues to generate the old output voltage 
until it receives a trigger signal from a hardware timer or a software write to the DACSWTRG 
field in DACx_​C0. This makes it possible to preload the DAC data register but still have the 
output change at fixed times. This simplifies the design of systems that require output updates to 
be precisely timed.

Example Application: Waveform Generator

Let’s use the DAC to create a simple waveform generator. The output for DAC0 is connected 
to pin PTE30. Listing 6.1 shows the function Init_​DAC, which initializes the DAC and related 
peripherals.

Bit

Read

Write

Reset 0 0

DACEN DACRFS DACTRGSE
L DACSWTRG

LPEN DACBTIEN DACBBIEN

0 0

0 0

0 0 0 0

7 6 5 4 3 2 1 0

Figure 6.9	 DAC control register 0, DACx_​C0.
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AMP buffer
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Figure 6.8	 KL25Z 12-​bit DAC [3].
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#define DAC_​POS (30)

void Init_​DAC(void) {
   //​ Enable clock to DAC and Port E
   SIM-​>SCGC6 |= SIM_​SCGC6_​DAC0_​MASK;
   SIM-​>SCGC5 |= SIM_​SCGC5_​PORTE_​MASK;

    //​ Select analog for pin
    PORTE-​>PCR[DAC_​POS] &= ~PORT_​PCR_​MUX_​MASK;
    PORTE-​>PCR[DAC_​POS] |= PORT_​PCR_​MUX(0);

    //​ Disable buffer mode
    DAC0-​>C1 = 0;
    DAC0-​>C2 = 0;

    //​ Enable DAC, select VDDA as reference voltage
    DAC0-​>C0 = DAC_​C0_​DACEN_​MASK | DAC_​C0_​DACRFS_​MASK;
}

Listing 6.1  Function to initialize DAC.

The second function Triangle_​Output (in Listing 6.2) sweeps the DAC output voltage up 
and down repeatedly. Note that two macros (DAC_​DATL_​DATA0 and DAC_​DATH_​DATA1, 
defined in MKL25Z4.H) are used to format the output data for the upper and lower output data 
registers. However, we still need to shift the data to the right by eight positions to position the 
upper four bits correctly for the macro.

void Triangle_​Output(void) {
    int i=0, change=1;

    while (1) {
        DAC0-​>DAT[0].DATL = DAC_​DATL_​DATA0(i);
        DAC0-​>DAT[0].DATH = DAC_​DATH_​DATA1(i >> 8);

        i += change;
        if (i ==0) {
          change = 1;
        } else if (i == DAC_​RESOLUTION-​1) {
          change = -​1;
        }
    }
}

Listing 6.2  Function to generate triangle wave output.

When the function Triangle_​Output is called, the system creates the waveform shown in 
Figure 6.10.



Embedded Systems Fundamentals with ARM Cortex-M based Microcontrollers: A Practical Approach160

160

Analog Comparator

Concepts

Figure 6.11 shows an analog comparator, which is a circuit that compares two analog voltages and 
indicates which is greater. This can be used to determine if a voltage is above or below a given level. 
The comparator has two inputs that are labeled plus and minus. We apply a voltage to each input: 
VinP to plus, VinM to minus. If VinP > VinM, then the comparator output will be a logic one. Otherwise 
the output will be a logic zero. The program can read the comparator output directly with software. 
Most comparators are able to generate an interrupt request when their output changes.

comparator
Circuit which compares two analog inputs to identify larger value

Connecting one of the inputs to a known reference voltage enables us to determine if the other 
input is above or below that voltage. Using the comparator this way quantizes an input voltage 
into one of two possible values, zero or one, providing one bit of data. Some MCUs supplement 
their comparators with multiple fixed reference voltages, or even a DAC for greater flexibility.

Figure 6.10  Triangle analog voltage waveform created by DAC and function Triangle_​Output.

+

–

Comparator

VinP

Digital output

VinM

Figure 6.11  Analog comparator indicates which input voltage is greater.
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Kinetis KL25Z Comparator

The comparator peripheral of the KL25Z MCU is shown in Figure 6.12. In this section we exam-
ine the key features of the peripheral; other features (filtering, hysteresis, low-​power, DMA) are 
described in the reference manual, FRDM-KL2 5Z user’s manual [4].

In order to enable the comparator, the clock gating must be enabled by writing a one to the 
CMP bit in the SIM_​SCGC4, and then writing one to the comparator enable bit (EN) in CMPx_​
CR1, shown in Figure 6.13.

Each comparator input can be connected to one of eight possible signals (Table 6.1). The 
comparator’s CMPx_​MUXCR register shown in Figure 6.14 contains the fields PSEL and MSEL 
to control with which signals the plus and minus inputs are connected. The possible settings are 
shown below: six external input signals, a programmable voltage generated by the comparator’s 
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Figure 6.12 � Overview of comparator peripheral in Kinetis KL25Z MCU [3]. The comparator (lower 
center) is supplemented with input multiplexers, a DAC for generating a reference voltage, 
and output processing logic.
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6-​bit DAC, a programmable voltage generated by the 12-​bit DAC peripheral described previously, 
and a fixed 1 V bandgap voltage reference.

In order to use the comparator’s 6-​bit DAC, the DAC must be enabled by writing a one to 
DACEN in CMPx_​DACCR, shown in Figure 6.15. Writing a value of n to the VOSEL field of 
CMPx_​DACCR results in a DAC output voltage of (n+1)×VRef/​64. VRSEL controls whether the 
DAC’s upper reference voltage is connected to VREFH (zero) or VDD (one).

The comparator’s output signal CMP0_​OUT can drive a digital output pin. To do this, set the 
OPE bit in CMPx_​CR1 to one and configure the appropriate pin control register multiplexer as 
shown in Table 6.2.

Bit
Read

Write
Reset 0 0 0 0 0 0 0 0

SE WE TRIGM PMODE INV COS OPE EN

7 6 5 4 3 2 1 0

Figure 6.13  CMPx_​CR1 controls general comparator settings.

Table 6.1  Comparator Input Multiplexer Settings and Freedom KL25Z Connections

PSEL or 
MSEL Input selected for comparator

MCU signal (with ALT0 
multiplexer setting)

Freedom KL25Z 
connector and pin 
number

000 CMP0_​IN0 PTC6 J1 11

001 CMP0_​IN1 PTC7 J1 1

010 CMP0_​IN2 PTC8 J1 14

011 CMP0_​IN3 PTC9 J1 16

100 12b DAC0 Reference /​ CMP0_​IN4 PTE30 J10 11

101 CMP0_​IN5 PTE29 J10 9

110 Bandgap –​ –​

111 6b DAC0 Reference –​ –​

Bit

Read
Write
Reset 0 0

0 PSTM PSEL MSEL

0 0 0 0 0 0

7 6 5 4 3 2 1 0

Figure 6.14  Plus and minus input multiplexers are controlled by CMPx_​MUXCR register.

Bit
Read

Write
Reset 0

DACEN VRSEL VOSEL

0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

Figure 6.15  Comparator DAC is controlled by CMPx_​DACCR register.
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The output of the comparator can be read using the COUT field of the CMPx_​SCR register 
shown in Figure 6.16. The comparator can generate an interrupt or DMA request on either a ris-
ing edge, a falling edge, or both. Setting the IER or IEF fields to one will enable the comparator to 
generate an interrupt on a rising edge (IER) or a falling edge (IEF). The CFR and CFF fields are set 
to one by the comparator hardware automatically whenever COUT rises from zero to one (CFR) 
or falls from one to zero (CFF). The ISR must clear these fields by writing one to them.

Example Application: Voltage Transition Monitor

Let’s see how to use the comparator to generate an interrupt whenever an analog voltage crosses 
an arbitrary voltage (1.85 V in this case). We initialize the comparator as shown in Listing 6.3. 
Note that the comparator’s minus input is connected to the comparator DAC. To generate an 
output voltage of approximately 1.85 V given a reference voltage of 3.3 V, we load the VOSEL 
field with a rounded value of 64 × (1.85/​3.3) = 35.879, which is 36. We configure the comparator 
to generate interrupts on both rising and falling edges of the comparator output, and then enable 
the comparator interrupt in the NVIC.

void Init_​Comparator(void) {
   //​ Enable clock to comparator
   SIM-​>SCGC4 |= SIM_​SCGC4_​CMP_​MASK;

   //​ Enable Comparator
   CMP0-​>CR1 = CMP_​CR1_​EN_​MASK;

   //​ Select input channels
   //​ Plus: channel 5 on Port E bit 29
   //​ Minus: CMP DAC is channel 7
   CMP0-​>MUXCR = CMP_​MUXCR_​PSEL(5) | CMP_​MUXCR_​MSEL(7);

   //​ Enable DAC, set reference voltage at 1.85 V. 64*1.85/​3.3 = 36.
   CMP0-​>DACCR = CMP_​DACCR_​DACEN_​MASK | CMP_​DACCR_​VOSEL(36);

Table 6.2  Possible Comparator Output Locations on Freedom KL25Z Board

MCU signal Multiplexer setting
Freedom KL25Z connector 
and pin number

PTC0 5 J1 3

PTC5 6 J1 9

PTE0 5 J2 18

Bit

Read

Write

Reset 0

0 0

0

DMAEN IER IEF
CFR CFF COUT

w1c w1c

0 0 0 0 0 0

7 6 5 4 3 2 1 0

Figure 6.16  CMPx_​SCR register shows comparator output, control interrupts, and DMA activity.
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   //​ Enable interrupt for Comparator on both edges
   CMP0-​>SCR = CMP_​SCR_​IEF_​MASK | CMP_​SCR_​IER_​MASK;

   NVIC_​SetPriority(CMP0_​IRQn, 128);
   NVIC_​ClearPendingIRQ(CMP0_​IRQn);
   NVIC_​EnableIRQ(CMP0_​IRQn);
}

Listing 6.3  Code to configure comparator to detect input voltage crossing 1.85 V level.

void CMP0_​IRQHandler(void) {
      //​ set break point here to observe operation
      if (CMP0-​>SCR & CMP_​SCR_​CFR_​MASK) { //​ rising 
   		     //​ light green LED
   		     Control_​RGB_​LEDs(0, 1, 0);
      } else if (CMP0-​>SCR & CMP_​SCR_​CFF_​MASK) { //​ falling
   		     //​ light red LED
   		     Control_​RGB_​LEDs(1, 0, 0);
      }
      //​ clear flags, keep interrupt on both edges enabled
      CMP0-​>SCR = CMP_​SCR_​IEF_​MASK | CMP_​SCR_​IER_​MASK |
       			  CMP_​SCR_​CFR_​MASK | CMP_​SCR_​CFF_​MASK;
}

Listing 6.4  Interrupt handler to light green LED on rising edges, red LED on falling edges.

The interrupt handler shown in Listing 6.4 checks to determine if the interrupt was caused by a 
rising or falling comparator output edge, and lights the LEDs accordingly. It then clears the rising 
and falling flags to prepare for the next transition.

Analog-​to-​Digital Conversion

Concepts

An ADC is similar to an analog comparator in that it quantizes an analog input voltage to create 
a binary output code. One major difference is that it provides more quantization levels and there-
fore more bits of resolution, allowing higher-​quality measurements of analog values.

Converter Architectures

There are various approaches to building an ADC. We will discuss the flash and successive approx-
imation architectures. There are others as well (e.g. sigma-​delta, dual-​slope integrating) but we 
will not discuss them here.

The comparator we saw earlier is essentially a 1-​bit ADC. A B-bit ADC can be built out of 
2B analog comparators operating in parallel, each with a different reference voltage. The result-
ing B-​bit code is created with digital logic that encodes the output bits of the 2B comparators. 
This is called a flash architecture because it is extremely fast. The conversion time consists of 



Chapter 6:  Analog Interfacing 165

165

the comparator delay and the digital encoder delay. However, this approach requires many com-
parators: increasing the resolution by one bit doubles the number of comparators needed. This 
increases power use and circuit area and therefore cost.

We can use a single comparator to make a series of comparisons, changing its reference volt-
age for each. The successive approximation architecture uses this approach and performs a binary 
search to quantize the input. Figure  6.17 shows the hardware for this converter, including a 
successive approximation register (SAR), a DAC, an analog comparator, and control logic.

Figure 6.18 shows how the converter works. The converter first clears all bits in the SAR to 
zero. It then sets the most significant bit in the SAR to one. The comparator determines if the 
input voltage is greater than the DAC output voltage. If so, the first bit is left as one, or else 
it is cleared to zero. This process advances to the next bit and repeats until all bits have been 
determined.

A successive approximation ADC is not as fast as a flash ADC, as it requires one comparison for 
each bit of the result. However, the circuitry is much smaller and does not grow quickly as resolu-
tion is increased. Adding one bit of resolution slows down the conversion slightly, as it requires 
one more comparison. However, the circuit area increase is marginal. Because of these positive 
characteristics, most MCUs with built-​in ADCs use a successive approximation ADC.
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Approximation
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Digital to 
Analog 
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–
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Output ValueClock

DAC Test 
Voltage

Figure 6.17  Architecture of successive approximation ADC.
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Inputs

ADCs often include an input multiplexer to allow a single ADC to select one of the multiple input 
channels to measure. We store a channel select code in a control register to specify the input channel.

An ADC requires two voltage references to define the conversion range. These voltage refer-
ences are used in the transfer function. Often the positive supply rail (e.g. 3.3V) is used as the 
positive reference, and ground is used as the negative reference.

Many types of ADC (including those using successive approximation) will produce incorrect 
results if the input changes much during the conversion process. A sample and hold circuit can 
be used to sample the input signal and then hold it fixed during the conversion time, eliminat-
ing this source of error. Conceptually, this circuit consists of a capacitor and a switch. Figure 6.19 
shows the operation of the circuit. When the switch is closed, the circuit will sample the input by 
charging the capacitor to the input voltage. Opening the switch disconnects the capacitor from 
the input, so the circuit will hold the saved value of the input voltage for the ADC to perform its 
conversion. The capacitor does not charge instantaneously when in sample mode, but is limited 
by the resistance of the input voltage source and switch and the capacitance. As a result, the 
switch must be closed for a minimum sample time.

A single-​ended signal represents information with the voltage difference between the signal 
and ground. Differential signals represent information with the voltage difference between two 
signals, neither of which is ground. This reduces the effects of noise. Some ADCs support dif-
ferential signal inputs. These ADCs contain hardware that allows direct measurement of the 
voltage difference, making conversion a single-​step process. An ADC without differential input 
signal support needs to convert each of the two signals separately, and then use software to find 
the difference.

Triggering

The trigger is a signal that tells the ADC to start sampling and converting an input. An ADC will 
typically include two types of triggers: software and hardware. A software trigger requires the soft-
ware (or DMA, discussed in Chapter 9) to write a value to a specific ADC control register to start 
the conversion. A hardware trigger requires a hardware signal to be asserted by a circuit, whether 
outside the MCU or within it. For example, a hardware timer could generate a signal every mil-
lisecond to trigger the ADC operation.

Sample Hold Sample Hold

Time

Vo
lta

ge

Sample

Output
Input

Figure 6.19  Sample and hold circuit tracks input voltage or holds last value depending on mode.
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The ADC performs sampling and conversion and then indicates that the conversion has com-
pleted. This is done by setting a flag in an ADC status register, and possibly also signaling an 
interrupt request. At this point the result of the conversion is available in digital form in an ADC 
result register.

Kinetis KL25Z ADC

The Kinetis KL25Z MCU contains an ADC with many features; an overview appears in Figure 
6.20. In this section we will examine the basic features. Full details can be found in the ADC 
chapter of the MCU reference manual [3] and in the MCU data sheet [5].

Analog input data is routed through an input multiplexer to the SAR converter. A trigger sig-
nal starts the conversion process; the control sequencer steps through a series of activities at a rate 
determined by the clock signal. The output of the SAR converter may be processed before being 
placed into a result register. The ADC may generate an interrupt when the conversion completes. 
Compare logic can be used to discard the results in (or outside of) a specified range. We will now 
examine the ADC in more detail.

Analog Inputs

The input multiplexer can select one of 24 single-​ended inputs or one of four pairs of differential 
inputs. The input channel is selected by the ADCH field of the SC1n register. Differential input 
mode is selected by setting the DIFF bit in SC1n register to one; otherwise single-​ended inputs 
are used.

There are several special multiplexer inputs.

•	 Channel 26 is connected to an on-​chip temperature sensor.
•	 Channel 27 is connected to an on-​chip fixed 1.0 V voltage reference (called a band gap reference).
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Figure 6.20  Overview of KL25Z ADC.
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•	 Channel 29 is connected to the high-​reference voltage VREFSH.
•	 Channel 30 is connected to the low-​reference voltage VREFSL.

Voltage References

The ADC uses two reference voltages, VREFSH and VREFSL. These can be selected from two pairs of ref-
erence voltages: VREFH and VREFL, or VALTH and VALTL using the REFSEL bit of the ADCx_​SC2 regis-
ter. On the KL25Z, VALTH is connected to the analog supply voltage VDDA, which is nominally 3.3 V.

SAR Converter

The ADC in the KL25Z MCU uses successive approximation for quantization, supporting various 
resolutions from 8 to 16 bits in signed or unsigned formats. Resolution is specified by the MODE 
field of ADCx_​CFG1, as shown in Table 6.3.

There are other conversion options available as well:

•	 Low-​power conversions save power by reducing the maximum ADC clock speed. Set bit 
ADLPC1 in ADCx_​CFG1 to enable this option.

•	 Input noise can be reduced by using a longer sample time. Set bit ADLSMP in ADCx_​CFG1 
to one to enable long samples, and then use the ADLSTS field in ADCx_​CFG2 to add from 6 
to 20 ADCK cycles to each conversion’s sample time.

•	 Continuous (back-​to-​back) conversions are enabled by setting ADCO in ADCx_​SC3 to one. 
Without this, only one conversion will be performed per conversion start request.

Conversion Trigger

A trigger is needed to start the conversion process. The ADTRG bit in SC2 selects either software 
triggering (zero) or hardware triggering (one).

•	 Software triggering consists of writing to SC1A to start the conversion. This is typically done 
by software, but could also be performed by the direct memory access peripheral (discussed 
further in Chapter 9).

•	 Hardware triggering consists of starting the conversion with a specific hardware signal that 
indicates when an event has occurred. These events include timer signals, comparator output, 

Table 6.3  Codes for ADC Conversion Modes

MODE Conversion mode

00 Single-​ended 8-​bit, differential 9-​bit

01 Single-​ended 12-​bit, differential 13-​bit

10 Single-​ended 10-​bit, differential 11-​bit

11 Single-​ended 16-​bit, differential 16-​bit
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and an external trigger signal. The trigger source is selected using the ADC0TRGSEL field of 
the register SIM_​SOPT7, as shown in Table 6.4.

Conversion Clock

The conversion clock signal ADCK determines how quickly the ADC samples and then converts 
input data. Depending on the ADC’s configuration, a sample can take from 4 to 26 ADCK cycles, 
and a conversion can take from 20 to 71 ADCK clock cycles. The complete timing details can be 
found in the user manual and data sheet.

The ADCK signal has frequency restrictions: it must be between 1 and 18 MHz when the 
ADC is operating with the resolution of up to 13 bits, or between 2 and 12 MHz for higher 
resolutions.

There are four possible inputs to the conversion clock: the bus clock (e.g. 24 MHz), the bus 
clock divided by two, ADACK (a local clock that can keep running when the rest of the CPU is 
stopped), and ALTCLK (an alternate clock source). The input is selected with the ADICLK field 
of the ADCx_​CFG1 register.

The input clock is divided by a factor specified by a code in the ADIV field of register ADCx_​
CFG1. Table 6.5 shows there are four possible division factors: 1, 2, 4, and 8.

Table 6.4  Codes for Selecting Hardware Trigger Signal for ADC0

ADC0TRGSEL Trigger selected for ADC0

0000 External trigger pin input

0001 HSCMP0 (comparator) output

0100 PIT (timer) trigger 0

0101 PIT (timer) trigger 1

1000 TPM0 (timer) overflow

1001 TPM1 (timer) overflow

1010 TPM2 (timer) overflow

1100 RTC (real-​time clock) alarm

1101 RTC (real-​time clock) seconds

1110 LPTMR0 (timer) trigger

other Reserved

Table 6.5  Codes for ADC Clock Division Factors

ADIV Clock division factor

00 1

01 2

10 4

11 8
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Conversion Completion and ISR

A completed conversion can be indicated in two ways. First, the control hardware sets COCO bit 
in SC1x to one. Second, the ADC can generate an interrupt (if AIEN in SC1 is set to one). The 
name for the ADC ISR is ADC0_​IRQHandler.

After the conversion has been completed, the ADC will begin the next conversion automati-
cally if in continuous conversion mode (flag ADCO in ADCx_​SC3 is one).

Special Output Processing

The ADC has dedicated hardware that can process the results from the SAR and greatly reduce 
the software processing needed in many cases. This hardware is shown in Figure 6.21.

The first component is a subtractor that can remove offsets determined during ADC calibra-
tion. This is useful for applications requiring extremely high accuracy.

The next component will average multiple conversion results automatically if bit AVGE in 
ADCx_​SC3 is set to one. This can eliminate the software processing required to average input 
signals. The number of samples to be averaged is selected from 1, 4, 8, 16, or 32 using the AVGS 
field of ADCx_​SC3. Note that conversion completion will be indicated with the COCO bit and 
ADC interrupt only after all of the samples have been taken.

The next component converts the data to the correct format, performing justification and 
extension to create a 16-​bit result. The data is right-​justified, so the LSB of the conversion 
data is always in bit 0. For conversion formats shorter than 16 bits, the upper unused bits 
need to be filled. Single-​ended conversions produce positive results in an unsigned format, 
so the upper bits are filled with zeros. Differential conversions produce positive or negative 
results in a two’s-​complement signed format, so the upper bits are filled by sign, extending 
the result. The formatted conversion result can be read from the ADC data result register  
ADCx_​Rn.

A compare function can detect conversion results that exceed a certain threshold or range and 
then generate an interrupt. Various comparisons are possible: less than threshold, greater than or 
equal to threshold, inside range, and outside range. Threshold comparisons will compare the ADC 
result with the comparison value located in ADCx_​CV1. Range comparisons will compare it with 
both ADCx_​CV1 and ADCx_​CV2. The comparison performed is selected with the ACFGT and 
ACREN fields of the ADCx_​SC2 register. The inside/​outside range selection depends on whether 
ADCx_​CV1 is greater than ADCx_​CV2 or not.

Format
Remove 
Offset

SAR 
Converter

Result 
Registers

Average

Compare
ADC 

InterruptConversion Complete

Figure 6.21  SAR output data processing hardware.
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Using the KL25Z ADC on the Freedom Board

The MCU family data sheet provides information on connections between ADC channels and 
MCU pins, whereas the FREEDOM-​KL25Z manual explains how MCU pins are connected 
to the board’s header connectors. The relevant information for analog inputs is summarized in 
Table 6.6.

Example Applications

Next we will examine two applications of the ADC. Both use polling to determine when the con-
version is complete, but in the next chapter we will use the ADC’s interrupt to reduce processor 
overhead and simplify multitasking.

Hotplate Temperature Sensor

We can measure the temperature of the hotplate using a device called a thermistor, which is a sen-
sor whose resistance varies with temperature. One type of thermistor (called negative temperature 
coefficient, or NTC) has a resistance that falls with increasing temperature. Figure 6.22 shows an 
example of an NTC thermistor whose resistance at 25°C is 33 kΩ. The manufacturer provides this 
information in the device’s data sheet.

Table 6.6  ADC Inputs and Multiplexer Settings on KL25Z Freedom Board

ADC channel 
(single-​ended)

MCU signal (with ALT0 multiplexer 
setting)

Freedom KL25Z connector and 
pin number

0 PTE20 J10 1

3 PTE22 J10 5

4 PTE21 (a), PTB29 (b) J10 3 (a), J10 9 (b)

5 PTD1 (b) J2 12 (b)

6 PTD5 (b) J2 4 (b)

7 PTE23 (a), PTD6 (b) J10 7 (a), J2 17(b)

8 PTB0 J10 2

9 PTB1 J10 4

11 PTC2 J10 10

12 PTB2 J10 6

13 PTB3 J10 8

14 PTC0 J1 3

15 PTC1 J10 12

23 PTE30 J10 11

Alex
Cross-Out

Alex
Inserted Text
PTE29
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We can create a voltage divider with an NTC thermistor and a fixed resistor. The output volt-
age VTemp will depend on the temperature as shown in Figure 6.23.

How can we convert this voltage reading to a temperature? Rather than use a look-​up table, 
let’s use a spreadsheet program to create an equation through a process called curve-​fitting. The 
equation that follows will calculate the approximate temperature in Celsius given the ADC con-
version result n, assuming a 16-​bit conversion and VRef = 3.3 V.

 
Temperature = − × ×( ) + × ×( ) −− −. . .1 13090 10 2 32656 10 1 846325 6 20 5n n 00 10

7 18641 10 1 43216 10 0 01557

15 4

11 3 6 2

× ×( )
+ × ×( ) − × ×( ) +

−

− −

n

n n. . . 662 36 9861×( ) −n .

0.1

1

10

100

1000

-40 -20 0 20 40 60 80 100 120 140

R
es

is
ta

nc
e 

(k
Ω

)

Temperature (⁰C)

Figure 6.22 � Resistance of NTC resistor falls with rising temperature. Note that the vertical axis is 
logarithmic.
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Figure 6.23 � Output voltage of 3.3 V divider created with 33 kΩ NTC resistor (upper) and a 5 kΩ fixed 
resistor (lower).
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We will connect VTemp to pin one of connector J10, which will send the signal through PTE20 to 
ADC channel 0.

The code to initialize the ADC appears in Listing 6.5.

#define ADC_​POS (20)

void Init_​ADC(void) {

      SIM-​>SCGC6 |= SIM_​SCGC6_​ADC0_​MASK;
      SIM-​>SCGC5 |= SIM_​SCGC5_​PORTE_​MASK;

      //​ Select analog for pin
      PORTE-​>PCR[ADC_​POS] &= ~PORT_​PCR_​MUX_​MASK;
      PORTE-​>PCR[ADC_​POS] |= PORT_​PCR_​MUX(0);

      //​ Low power configuration, long sample time, 16 bit single-​ended conversion
      //​ Bus clock input
      ADC0-​>CFG1 = ADC_​CFG1_​ADLPC_​MASK | ADC_​CFG1_​ADLSMP_​MASK | ADC_​CFG1_​MODE(3) |
               ADC_​CFG1_​ADICLK(0);
      //​ Software trigger, compare function disabled, DMA disabled
      //​ Voltage references VREFH and VREFL
      ADC0-​>SC2 = ADC_​SC2_​REFSEL(0);
}

Listing 6.5  Code to initialize ADC to read temperature sensor circuit.

The code to read the ADC and calculate the temperature appears in Listing 6.6. The 
code starts a conversion on channel 0 and uses polling to determine when the conversion 
is complete. It then reads the ADC result and calculates the temperature using a polyno-
mial approximation. The equation given is reorganized to reduce the complexity and improve 
execution speed.

float Measure_​Temperature(void){
      float n, temp;

      ADC0-​>SC1[0] = 0x00; //​ start conversion on channel 0

      //​ Wait for conversion to finish
      while (!(ADC0-​>SC1[0] & ADC_​SC1_​COCO_​MASK))
              ;
      //​ Read result, convert to floating-​point
      n = (float) ADC0-​>R[0];

      //​ Calculate temperature (Celsius) using polynomial equation
      //​ Assumes ADC is in 16-​bit mode, has VRef = 3.3 V
      temp = -​36.9861 + n*(0.0155762 + n*(-​1.43216E-​06 + n*(7.18641E-​11
              + n*(-​1.84630E-​15 + n*(2.32656E-​20 + n*(-​1.13090E-​25))))));
      return temp;
}

Listing 6.6  Code to read ADC and convert result to Celsius temperature value.
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Infrared Proximity Sensor

We can use the ADC to create a sensor that uses reflected infrared (IR) light to detect if an object 
is nearby. The sensor uses an IR emitter (LED) and an IR detector (phototransistor) pointing in 
the same direction, as shown in Figure 6.24. If there is no object in front of the sensor, then no IR 
energy will be reflected back to the detector. If an object is present, then there will be a reflection 
and the detector will see it. The strength of the reflection depends on the object’s distance, size, 
reflectivity, and orientation.

infrared (IR)
Electromagnetic energy immediately past the visible portion of the spectrum; also called invisible light

The proximity sensor works with a combination of hardware and software. Simply keeping 
the emitter on and measuring the detector’s signal will not work well because the system will be 
very vulnerable to changes in ambient light levels. We will use a more sophisticated approach 
that compares the IR levels with the emitter off and on in order to subtract out the effects of 
ambient light.

Sensing occurs in two steps: First, the software measures the IR light level (using IR-​sensitive pho-
totransistor Q1 and the ADC) when the IR-​emitting LED is turned off. Second, the software measures 
the IR light level when the IR LED is turned on. An object that reflects the IR back will increase this 
IR brightness level. The difference between the two readings indicates the reflected signal’s strength.

Circuit Description
The circuit is shown in Figure 6.25. The IR energy is emitted by IR LED D1, which the MCU 
controls with a GPIO pin output called IR_​LED_​DRIVE. The IR energy is detected by an IR-​sen-
sitive phototransistor Q1. Q1 forms a voltage divider with R2. A higher level of IR energy lowers 
the phototransistor’s resistance and therefore lowers the voltage on signal IR_​SENSE.

The traces in Figure 6.26 show the operation of the circuit. The IR LED is on when the upper 
trace is low and off when it is high. There is no reflecting object present, but the IR LED emits a 
small amount of energy laterally. This IR energy strikes the phototransistor, resulting in a minor 
signal.

Figure 6.27 shows the circuit’s behavior with an object about 5 cm away, whereas Figure 6.28 
shows the results from an object about 1 cm away. Note that the phototransistor takes time to 
respond to the change in IR energy, as shown by the curves in the lower traces. Our software must 

No object present, no
IR reflected back to receiver

Object present, reflects 
IR back to receiver

Figure 6.24  Proximity sensor method of operation.
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wait after switching IR_​LED_​DRIVE before it measures IR_​SENSE. The longer it waits, the more 
sensitive the system will be.

Figure 6.29 shows the result of sweeping four separated fingers over the proximity sensors. The 
oscilloscope has been adjusted to show a longer time period.

Control Software
The control software uses several functions to do its work. These functions use the definitions in 
the header file shown in Listing 6.7.

Figure 6.26 � No reflecting object nearby. Upper trace is LED (transmitter) drive signal, lower trace is 
receiver (phototransistor) signal.

R1
150

R2
10K

+3V3

D1
Infrared

IR_LED_DRIVE

DGND

IR_SENSE

Q1

Figure 6.25  Schematic diagram of infrared proximity sensor circuit.
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Figure 6.27  Transmitter and receiver signals with reflecting object 5 cm away.

Figure 6.28  Transmitter and receiver signals with reflecting object 1 cm away.
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#define IR_​LED_​POS (1) //​ on port B bit 1
#define IR_​PHOTOTRANSISTOR_​CHANNEL (8) //​ on port B bit 0

#define T_​DELAY_​ON (1000)
#define T_​DELAY_​OFF (1000)

#define NUM_​SAMPLES_​TO_​AVG (10)

Listing 6.7  Symbol definitions from header file.

void Init_​ADC(void) {

   SIM-​>SCGC6 |= (1UL << SIM_​SCGC6_​ADC0_​SHIFT);
   ADC0-​>CFG1 = ADC_​CFG1_​ADLPC_​MASK | ADC_​CFG1_​ADIV(0) | ADC_​CFG1_​ADLSMP_​MASK |
   ADC_​CFG1_​MODE(3) | ADC_​CFG1_​ADICLK(0); //​ 16 bit conversion mode
   ADC0-​>SC2 = ADC_​SC2_​REFSEL(0); //​ Select default voltage reference pins
}

void Init_​IR_​LED(void) {
   PORTB-​>PCR[IR_​LED_​POS] &= ~PORT_​PCR_​MUX_​MASK;
   PORTB-​>PCR[IR_​LED_​POS] |= PORT_​PCR_​MUX(1);
   PTB-​>PDDR |= MASK(IR_​LED_​POS);

   //​ Start off with IR LED turned off
   Control_​IR_​LED(0);
}

Listing 6.8  Functions to initialize ADC and IR LED.

Figure 6.29  Transmitter and receiver signals detecting four fingers passing over proximity sensor in 
sequence.
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The Init_​ADC function (in Listing 6.8) configures the GPIO pins and ADC input as needed. 
The Init_​IR_​LED function configures a GPIO pin and a bit in Port B to drive the LED.

void Control_​IR_​LED(unsigned int led_​on) {
   	 if (led_​on) {
    			   PTB-​>PCOR = MASK(IR_​LED_​POS);
   	 } else {
    			   PTB-​>PSOR = MASK(IR_​LED_​POS);
   	 }
}

unsigned Measure_​IR(void) {
   	 volatile unsigned res=0;

   	 ADC0-​>SC1[0] = IR_​PHOTOTRANSISTOR_​CHANNEL; //​ start conversion on channel 0

   	 while (!(ADC0-​>SC1[0] & ADC_​SC1_​COCO_​MASK))
   		  ; //​ Wait until conversion is complete

   	 res = ADC0-​>R[0];
   	 //​ Complement result since voltage falls with increasing IR level
   	 //​ but we want result to rise with increasing IR level
   	 return 0xffff-​res;
}

Listing 6.9  Functions to control IR LED and measure IR level from phototransistor through ADC.

The Control_​IR_​LED function (in Listing 6.9) turns on or off the IR LED based on the func-
tion argument. The Measure_​IR function starts an ADC conversion, blocks (waits) until the 
conversion is complete, reads the result, and then inverts the result so that larger values indicate 
brighter levels.

void Delay(unsigned int time_​del) {
   	 //​ This is a very imprecise and fragile implementation!
   	 time_​del = 10*time_​del;
   	 while (time_​del-​-​) {
   		  ;
   	 }
}

Listing 6.10  Simple busy-​waiting time delay function.

The Delay function (in Listing 6.10) waits for an amount of time proportional to the input 
parameter. Note that the actual time delay is not specified, and will vary based on processor speed, 
compiler settings, and other factors.

int Threshold[NUM_​RANGE_​STEPS] = {34000, 27000, 20000, 14000, 8000, 0};

const int Colors[NUM_​RANGE_​STEPS][3] = {{ 1, 1, 1}, 	 //​ white
     	 { 1, 0, 1}, 	 //​ magenta
     	 { 1, 0, 0}, 	 //​ red
     	 { 1, 1, 0}, 	 //​ yellow
     	 { 0, 0, 1}, 	 //​ blue
     	 { 0, 1, 0} 	 //​ green
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};

void Display_​Range(int b) {
   	 unsigned i;

   	 for (i=0; i<NUM_​RANGE_​STEPS-​1; i++) {
   		  if (b > Threshold[i])
    			   break;
   	 }

   	 Control_​RGB_​LEDs(Colors[i][RED], Colors[i][GREEN], Colors[i][BLUE]);
}

Listing 6.11  Function and data to light LED based on IR reflectance.

The Display_​Range function (in Listing 6.11) lights the RGB LED according to the input argu-
ment (IR brightness difference), and uses a table to define thresholds and colors.

int main (void) {
   	 static int on_​brightness=0, off_​brightness=0;
   	 static int avg_​diff;
   	 static int diff;
   	 unsigned n;

   	 Init_​ADC();
   	 Init_​RGB_​LEDs();
   	 Init_​IR_​LED();
   	 Control_​RGB_​LEDs(0, 0, 0);

   	 while (1) {
   		  diff = 0;
   		  for (n=0; n<NUM_​SAMPLES_​TO_​AVG; n++) {

      			  //​ Measure IR level with IRLED off
      			  Control_​IR_​LED(0);
      			  Delay (T_​DELAY_​OFF);
      			  off_​brightness = Measure_​IR();

      			  //​ Measure IR level with IRLED on
      			  Control_​IR_​LED(1);
      			  Delay(T_​DELAY_​ON);
      			  on_​brightness = Measure_​IR();

      			  //​ Calculate difference
      			  diff += on_​brightness -​ off_​brightness;
   		  }
   		  //​ Calculate average difference
   		  avg_​diff = diff/​NUM_​SAMPLES_​TO_​AVG;
   		  //​ light RGB LED according to range
   		  Display_​Range(avg_​diff);
   	 }
}

Listing 6.12 � Main function that controls IR LED, measures IR phototransistor voltage, and calculates 
reflectance.
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The main function (in Listing 6.12) initializes the system and then measures IR reflectance. To 
do this, it repeatedly measures the difference in brightness caused by lighting the IR LED and then 
calls a function to indicate the range with color coding on the RGB LED. In order to reduce noise, 
it averages at least ten measurements before each update of the LED color.

Summary

In this chapter we have seen how a digital microcontroller can measure and generate analog sig-
nals. We began by examining quantization and sampling. We then examined various peripherals. 
A digital-​to-​analog converter allows the MCU to generate an analog signal. A comparator allows 
the MCU to determine which of the two analog voltages is greater. Using a known reference volt-
age as one of the inputs allows us to determine whether the other input is above or below that 
voltage. An analog-​to-​digital converter measures an analog voltage and provides a proportional 
digital representation.

Exercises

For all of these questions, assume the KL25Z peripherals are used unless specified otherwise.

1.	 Consider a 12-​bit ADC with a reference voltage of 3.3 V operating in single-​ended mode. 
Given an input voltage of 0.92 V, what will the output code be?

2.	 Consider an 8-​bit ADC with a reference voltage of 2.7 V operating in single-​ended mode. 
What input voltage range will lead to an output code of 0x34?

3.	 Consider a 12-​bit ADC with an unknown reference voltage operating in single-​ended mode. 
What is the reference voltage if sampling the 1.0 V band gap reference results in a code of 
0x513?

4.	 Consider a 12-​bit ADC with a reference voltage of 3.3 V operating in single-​ended mode. If it 
samples the internal temperature sensor and reads a voltage of 0.621 V, what is the tempera-
ture? Assume VTemp25=719 mV and m = 1.175 mV/​°C.

5.	 Consider a 12-​bit DAC with a reference voltage of 3.3 V. What input code will result in an 
output of 1.43 V?

6.	 Consider a 10-​bit DAC with a reference voltage of 2.7 V. Given that the input code is 0x104, 
what is the output voltage?

7.	 What is the output voltage resolution of an 8-​bit DAC with a reference voltage of 3.0 V?
8.	 How would you configure the comparator in the KL25Z to trigger whenever the input voltage 

rises above 2.0 V? Assume the reference voltage is 3.3 V.
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Overview

In this chapter, we show how timer peripherals work to measure elapsed time, count events, 
generate events at specified times, help the processor recover from an out-​of-​control program, and 
perform other more advanced features. Using timers, it is also possible to output a square wave 
with a controllable frequency and duty cycle. We will cover the concepts behind these features 
and how to use them.
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Concepts

The core of a timer or timer/counter peripheral is a digital counter whose value changes by one 
each time the counter is clocked. The faster the clocking rate, the faster the device counts. If 
the timer’s input clock frequency is 10 MHz, then its period is the inverse of 10 MHz: 1/​10 MHz 
or 0.1 μs. Hence one count (increment or decrement) of the register represents 0.1 μs. We can 
measure how much time has passed since the counter was reset by reading the counter value and 
multiplying it by 0.1 μs. For example, if the counter value is 15821, and the count direction is up 
(incrementing), then we know that 1582.1 μs have passed since the counter was reset.

timer/counter
Peripheral which measures time or counts events

counter
Digital circuit which counts number of input pulses

Timer Circuit Hardware

Figure 7.1 shows the block diagram of a basic timer peripheral’s hardware. A transition on the input 
signal may represent either an event or a fixed time interval. Regardless, the transition causes the 
counter to change (e.g. increment by one). The timer peripheral can therefore count events or 
measure time. Other hardware is often added to make it even more flexible. Timer peripherals 
are typically able to measure elapsed time, count events, generate events at fixed times, generate 
waveforms, or measure pulse widths and frequencies. This circuitry controls factors such as:

•	 Which signal source it counts. If it counts a signal with a known frequency, then we can use it 
to measure elapsed time

•	 When it starts and stops running
•	 Whether it counts rising or falling edges
•	 Which direction it counts
•	 What happens when it overflows
•	 If and how it is reloaded
•	 Whether its value is captured by another register
•	 Whether it generates a signal or an interrupt

Counter mode 
counts events 

Timer mode counts 
clock pulses to 
measure time

Interrupt

Reload Value

Overflow/
Underflow

Reload Output signal
Input signal Controller

Presettable
Counter

Direction

Figure 7.1  Timer peripheral hardware is built around a counter.
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Example Timer Uses

Periodic Timer Tick

One of the most basic uses of a timer peripheral is to generate a periodic interrupt event. The 
time between interrupts is steady because it is controlled by hardware and not affected by software 
delays. We may want to monitor elapsed time, for example, to generate a time-​stamp for logged 
events. The timer’s counter register measures the current time with a high resolution. If needed, 
we can extend the timer’s range by using its overflow interrupt to trigger an interrupt service rou-
tine that increments an overflow counter.

Many software tasks in embedded systems require time delays. A task could use a busy-​waiting 
time delay loop to wait, but this does not share the processor with other tasks. A periodic timer 
interrupt can be used instead to track the time delay and start the task after it has elapsed.

Watchdog Timer

It is difficult to make a program for an embedded system completely perfect. One reason is 
that developers sometimes translate their ideas into code (and peripheral configurations) 
incorrectly, introducing bugs. This may be from misunderstanding what a C code statement 
really means, how a peripheral really operates, or how different parts of a system might inter-
act (e.g. preemption). Another reason is that the developer has translated an imperfect idea 
to code. It is difficult for humans to imagine all possible sequences of combinations of inputs 
to an embedded system, so we often leave some of these out of our specification of how the 
system should behave, and don’t consider them when designing the system to meet that 
specification.

We can reduce the number of both types of bug with various methods (e.g. testing, rigorous 
design process, design reviews), but eliminating all bugs will be expensive and probably infeasible. 
So bugs are present essentially in all embedded system software. We still want the system to oper-
ate correctly most of the time. One way to do this is to restart the program automatically if an 
error is detected.

A watchdog timer (WDT) is a peripheral that tries to detect if the program goes out of 
control, in which case the WDT resets the processor to restart the program. The WDT uses a 
counter to keep track of the elapsed time and expects to be signaled (serviced) by the program 
periodically, such as once per second. If the WDT is not serviced within the expected time, then 
it will reset the processor. If the WDT is serviced, then it will reset its counter to begin a new 
time measurement.

watchdog timer (WDT)
Hardware peripheral used to reset out-of-control program

The program is responsible for servicing the WDT at correct times. There are many types of 
bugs in the program that can keep it from timely WDT servicing, making this a useful error detec-
tion method. Nearly all MCUs provide a WDT, and good embedded systems use them. However, 
bugs that do not affect the timing of the WDT servicing will not be detected.
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Time and Frequency Measurement

We can measure a signal’s frequency or period with a timer peripheral. For example, an anemometer 
generates a pulse signal with a wind-​dependent frequency. The anemometer in Figure 7.2 has a 
rotating section with three arms and cups and one or more magnets mounted near the axle. A mag-
netic sensor (such as a reed switch) is mounted on the fixed mast. The magnetic sensor generates 
a pulse each time a magnet passes by, so the frequency of the signal fanem will be proportional to the 
wind speed, neglecting the errors caused by inertia and friction. We can then calculate the wind 
speed vwind based on the fanem and the distance r of the anemometer cups from the axis.

	 v r fwind anem= 2π 	

How do we find the signal’s frequency or period (the inverse of the period)?

•	 We can measure the signal’s frequency by counting how many pulses have occurred during a 
fixed time period. We configure the peripheral in event counter mode. To make a measurement, 
we clear the timer, start it running, wait for the fixed measurement time, and then read the 
counter value. Dividing the count value by the measurement time gives the signal frequency, 
which we then scale to provide wind speed.

•	 We can measure the signal’s period by measuring the time between successive rising edges. We 
configure the peripheral in timer mode, so it counts at a fixed rate. We then start the timer 
running. When the input signal has a rising edge on the input signal, we capture the value of 
the timer’s counter with an interrupt service routine. We then wait for the next rising edge and 
capture the new value of the timer’s counter. The period of the signal is equal to the difference 
in the count values divided by the count frequency. We invert the period and then scale it to 
determine wind speed.

Figure 7.2  Cup anemometer used to measure wind speed. Photo by author.
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Timer peripherals typically have additional support circuitry to simplify these measurement proce-
dures to improve accuracy and reduce software processing and complexity, as we will see shortly.

PWM Signal Generation

Pulse-​width modulation (PWM) is a method to send more than one bit of information on a single dig-
ital signal line. Rather than encode the information serially as a series of bits (as we will see in the next 
chapter), the information is encoded as the fraction of time that the signal is a logic one (called the 
duty cycle). Because the signal is sent in a digital format, it is much less vulnerable to electrical noise.

Pulse-​width modulation (PWM)
Method for encoding information onto a single digital signal based on duty cycle

Duty cycle
Fraction of time that a digital signal is asserted

Some devices can be driven by a PWM signal or a buffered version that can provide more 
power, voltage, and current. For example, a PWM signal may drive a motor at a reduced speed 
or partially dim a light. The high-​frequency components of the signal are averaged by the inertia 
of the motor or the persistence of human vision. A PWM signal can be averaged with a low-​pass 
filter to create an analog voltage if we do not have a DAC.

Remember the hot-​plate example from the first chapter? We can use PWM to control the 
heating element. Rather than being only fully on or fully off, the heating element can take on 
intermediate heating values, proportional to the duty cycle. This will enable more precise control 
with less error and overshoot.

Figure 7.3 shows an example of a PWM signal with a duty cycle of about 70%. There are several 
terms that describe PWM signal characteristics:

•	 The on-​time TOn is the amount of time the signal is true.
•	 The off-​time TOff is the amount of time the signal is false.
•	 The signal frequency f indicates how many pulses are sent per second.
•	 The period T is the inverse of the frequency:  T = 1/​f. It is also the sum of the on and off 

times: T = TOn + TOff

•	 The duty cycle D is the on-​time divided by the period: D = TOn/​T
•	 The polarity of the signal may be active-​high or active-​low. For active-​high signals, the signal is on 

(true) when it is a logic one. For active-​low signals, the signal is on (true) when it is a logic zero.

TOn : on-time

Time

TOff : off-time

T: period

Figure 7.3  Example of pulse-​width modulated signal.
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Timer Peripherals

SysTick Timer

The Cortex-​M0+ core contains a simple timer peripheral called the SysTick timer, shown in Figure 7.4. 
It is designed to provide a periodic tick for system operation, such as in a scheduler or operating system 
kernel. Regardless of MCU device manufacturer, all Cortex-​M processors (M0, M0+, M3, M4, and 
M7) have one. This helps make the system software more portable across different devices.

The counter in the SysTick timer is 24 bits long and decrements when clocked. Its current 
value can be read from the VAL register field, shown in Figure 7.5. When first enabled, the coun-
ter is loaded from the 24-​bit LOAD1 field in Figure 7.6. It then counts down with each input clock 
pulse. After the counter reaches zero it reloads itself with the RELOAD value and can generate a 
SysTick exception (if enabled). Writing anything to the SYST_​CVR clears that register to zero.

SysTick timer
Timer peripheral available in Cortex-M CPU cores, typically used to generate periodic time tick

The counter divides the input frequency by a factor of LOAD+1. In order to divide an input 
frequency fin by a factor of N, we store N-​1 in the LOAD register.

The CTRL register controls and indicates the status for the SysTick timer.

•	 The CLKSOURCE field selects the clock source, which can be either the processor clock (one) 
or an external reference clock (zero). On the KL25Z MCU, the processor clock runs at up to 48 
MHz, and the external reference clock is the processor clock divided by 16.

•	 The TICKINT field controls whether counting down to zero will enable SysTick Exception 
request (one) or not (zero).

•	 The ENABLE field enables the counter when set to one.
•	 The COUNTFLAG field returns a one if the timer has counted down to zero since the last time 

this register was read. Reading SYST_​CSR clears COUNTFLAG to zero, as does writing any 
value to SYST_​CVR.

The SYST_​CALIB register provides support for calibrating the timer and is not discussed further 
here. Further information on the SysTick timer can be found in the ARM documentation and 
other texts [1], [2].

	1	 This text uses the CMSIS names for these registers. The ARM documentation uses different names: SYST_​RVR for LOAD, SYST_​
CVR for VAL, SYST_​CSR for CTRL [1].

SysTick
Interrupt

LOAD

Processor
Clock

External
Clock VAL

24-bit Counter
Controller

Clock 
Selection

Figure 7.4  Overview of SysTick timer circuitry.
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CMSIS definitions for the SysTick timer peripheral are located in the core_​cm0plus.h include 
file. That file also defines a function SysTick_​Config that can be used to configure the timer. The 
exception handler is called SysTick_​Handler, and the exception number is SysTick_​IRQn.

Example: Periodic 1 Hz Interrupt

Let’s configure the SysTick timer to generate an interrupt every second, assuming the proces-
sor clock is 48 MHz. We need to divide the processor clock down by a factor of 48 MHz/​1 Hz = 
48,000,000. The value of 47,999,999 is too large to fit into the 24-​bit LOAD field, so we will need 
to use the alternate clock source, which runs at 48 MHz/​16 = 3 MHz. The new division factor is 3 
MHz/​1 = 3,000,000, and the LOAD value of 2,999,999 does fit into 24 bits.

void Init_​SysTick(void) {
  SysTick-​>LOAD = (48000000L/​16);          //​ Set reload to get 1 s interrupts
  NVIC_​SetPriority (SysTick_​IRQn, 3);     //​ Set interrupt priority 
  SysTick-​>VAL  = 0;                       //​ Force load of reload value 
   SysTick-​>CTRL = SysTick_​CTRL_​TICKINT_​Msk | //​ Enable interrupt, alt. clock source
                SysTick_​CTRL_​ENABLE_​Msk;    //​ Enable SysTick timer
}

Listing 7.1  Function to initialize SysTick Timer to generate 1 Hz interrupts.

The Init_​SysTick function in Listing 7.1 configures the timer. It first writes the LOAD value, 
enables the SysTick IRQ in the NVIC, initializes the current count value, and finally configures 
CTRL to use the alternate clock source, enable interrupts, and enable the timer.

  void SysTick_​Handler() {
     static int n=0;
     Control_​RGB_​LEDs(n&1,n&1,n&1);
     n++;
  }

31 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VAL

Figure 7.5  SysTick Timer current value register (VAL or SYST_​CVR).

31 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LOAD

Figure 7.6  SysTick Timer reload value register (LOAD or SYST_​RVR).

31 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COUNTFLAG CLKSOURCE TICKINT ENABLE

Figure 7.7  SysTick Timer control and status register (CTRL or SYST_​CSR).
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Listing 7.2  Handler for SysTick exception runs every second, turns LEDs on or off.

The exception handler for the SysTick Timer in Listing 7.2 runs each time the timer reaches 
zero, which is 1 Hz in this example.

Kinetis KL25Z COP Watchdog Timer

The KL25Z MCUs feature a watchdog timer called the computer operating properly (COP) [3]. 
The COP will reset the MCU if it is not serviced when required.

Figure 7.8 shows the basic operation of the COP. When the MCU comes out of reset, the 
program starts running and can configure the COP operation. The COP counts up as the applica-
tion program runs. Eventually the program services the COP, resetting its counter to zero. The 
COP resumes counting from zero, expecting to be serviced again by the program before reaching 
its time-​out value. The diagram shows a case in which the program starts running out of control 
(e.g. due to a bug or electrical noise) and the COP is not serviced. Eventually, the COP times out, 
resetting the MCU and causing the program to restart.

With the window mode, the COP must be serviced within a specific portion of the time period, 
as shown in Figure 7.9 in green. This provides more robust protection against faults, because if the 
watchdog is serviced too early or too late (outside of the green window area) it will reset the CPU. 
The KL25Z COP can be configured so the valid window is the last 25% of the watchdog period.

Hardware Configuration

The COP is controlled by two registers in the system integration module (SIM). Shown in 
Figure 7.10, the SIM_​COPCTRL register configures the COP.

•	 The COPCLKS field selects the clock source for the COP. A zero selects the internal low-​power 
oscillator (LPO) that runs at about 1000 Hz, whereas one selects the bus clock (e.g. 24 MHz). 
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Figure 7.8  COP Watchdog timer detects program that is out of control, resets system to restart program.
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Figure 7.9  Windowed watchdog resets system if serviced outside of valid time window.

15 4 3 2 1 0

0 COPT COPCLKS COPW

Figure 7.10  SIM_​COPCTRL control register.

7 6 5 4 3 2 1 0

POR PIN WDOG 0 LOL LOC LVD WAKEUP

Figure 7.11  Reset control module status register RCM_​SRS0 indicates cause of reset.

The exact frequency of the LPO may vary between 909 Hz and 1111 Hz as described in the 
MCU datasheet [4].

•	 Setting the COPT field to a nonzero value enables the COP and sets the time-​out period. A 
value of one selects a time-​out period of 25 LPO cycles or 213 bus clock cycles, a value of two 
selects a time-​out period of 28 LPO cycles or 216 bus clock cycles, and a value of three selects a 
time-​out period of 210 LPO cycles or 218 bus clock cycles.

•	 The COPW field enables windowed mode when set to one and the bus clock is used (i.e. 
COPCLKS is one).

The initial value of SIM_​COPCTRL after reset is 0x0C, so the COP is enabled with a time-​out period 
of 1024 LPO cycles in nonwindowed mode. The COPCTRL register accepts only the first data writ-
ten to it after the processor has been reset. Subsequent writes are ignored to improve system reliability.

The SIM_​SRVCOP control register is used to service the COP, which resets its counter. To 
service the COP, the code must write 0x55 and then 0xAA to SIM_​SRVCOP in order.

The processor can read the reset control module’s status register zero to determine the cause of 
the reset. As shown in Figure 7.11, the WDOG bit is set to one if a reset has been caused by the 
watchdog timer and cleared otherwise. Other causes which can be distinguished include power-​
on reset, external reset pin, loss of PLL lock, loss of external clock, low voltage detection, and 
wakeup from a low-​leakage stop mode.
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How to Use a WDT

Now we know how to configure and service the COP WDT. How should we use it? Here are some 
common best practices; these and others are discussed in greater depth elsewhere [5] [6].

How Long Should the WDT Period Be?
The WDT period sets the maximum detection delay, so choose one that is appropriate for the 
system. An MCU controlling a cordless power tool (e.g. a drill) needs a short WDT because the 
tool can injure the user, or damage the environment, the drill itself, and the battery.

If we shorten its period, the WDT must be serviced more frequently. This requires a 
better understanding of the program’s timing behavior, which may be more complex than 
expected.

Where Should the WDT Be Serviced, and How Often?
Do not service the watchdog in an interrupt service routine, because ISRs are likely to run even 
if the rest of the software has crashed. Instead service the watchdog in mainline non-​ISR code, 
preferably low-​priority code that is vulnerable to system crashes.

Do not scatter WDT service commands throughout the code. First, this lack of design leads 
to sloppy use of the WDT, making it much less effective. Second, having multiple WDT service 
locations will complicate finding the cause of WDT resets.

Embedded systems have code for two phases:  the start-​up code configures and prepares the 
system, whereas the operational code handles everything else. The WDT may need to be serviced 
multiple times during system start-​up if there are operations that take a long time to complete. 
Once the system is in its operational mode, the WDT should be serviced in few places, preferably 
only one.

How Do We Debug a System with a WDT?
A WDT complicates debugging, as it will reset the system shortly after the program hits a break-
point. To prevent this problem, the KL25Z’s COP will not run while the MCU is in debug or stop 
mode. Other WDTs typically have an equivalent feature.

Example: Tilt Sensor

Let us use the COP WDT and trigger it when the FRDM-​KL25Z board is not horizontal. We 
will use the MMA8451Q inertial sensor, which is described in Chapter 8 and the device’s 
datasheet [7]. After starting up, the code will initialize the COP WDT and LEDs. It will then 
flash the RGB LED three times to indicate if this is a start-​up after a regular reset (green) or 
after a WDT reset (red). The code will next initialize the I2C communications bus and inertial 
sensor. Finally the code will enter its main loop, in which it reads the inertial sensor and com-
putes the board’s roll and pitch angles. If the board is sufficiently horizontal, the LED will be 
lit green and the COP WDT will be serviced. If the board is tilted enough, the LED will be lit 
yellow and the COP WDT will not be serviced. If the COP WDT is not serviced within about 
1.024 seconds, it will reset the system. The code will restart, flashing the LED red to indicate 
the WDT reset cause.
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void Init_​COP_​WDT(void) {
     //​ Select 1 kHz clock and 1024 cycle time-​out
      SIM-​>COPC = SIM_​COPC_​COPT(3) & ~SIM_​COPC_​COPCLKS_​MASK & ~SIM_​COPC_​COPW_​MASK;
}

void Service_​COP_​WDT(void) {
     SIM-​>SRVCOP = 0x55;
     SIM-​>SRVCOP = 0xaa;
}

Listing 7.3  Functions to initialize and service COP WDT.

The two functions to initialize and service the COP WDT are shown in Listing 7.3 and are 
quite simple.

#define NUM_​STARTUP_​FLASHES (5)
#define STARTUP_​FLASH_​DURATION (20)

void Flash_​Reset_​Cause(void) {
   unsigned n;

   for (n=0; n<NUM_​STARTUP_​FLASHES; n++) {
       if (RCM-​>SRS0 & RCM_​SRS0_​WDOG_​MASK)
           Control_​RGB_​LEDs(1, 0, 0); //​ Red: WDOG caused reset
       else
           Control_​RGB_​LEDs(0, 1, 0); //​ Green: WDOG did not cause reset

       Delay(STARTUP_​FLASH_​DURATION);
       Control_​RGB_​LEDs(0, 0, 0);
       Delay(2*STARTUP_​FLASH_​DURATION);
   }
}

Listing 7.4  Function to flash LEDs with color  determined by the reset cause.

The code to determine the cause of the reset and flash the LEDs accordingly is shown in Listing 
7.4. The code reads the reset control module status register and lights the correct LEDs. After a 
delay, all the LEDs are turned off. After another delay the loop repeats or exits.

#define MAX_​ANGLE (30)

int main (void) {

   Init_​COP_​WDT();
   Init_​RGB_​LEDs();
   Flash_​Reset_​Cause();             //​ Show system is starting up by flashing LEDs
   Service_​COP_​WDT();

   i2c_​init();                       //​ Init i2c 
   if (!init_​mma()) {                //​ Init mma peripheral 
          Control_​RGB_​LEDs(1, 0, 1); //​ Light purple error LED 
          while (1)                  //​ Not able to initialize MMA
                ;
   }
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   Service_​COP_​WDT();
   Delay(300);                      //​ Delay before starting rest of program

   while (1) {
         read_​full_​xyz();
         convert_​xyz_​to_​roll_​pitch();
         if ((fabs(roll) > MAX_​ANGLE) | (fabs(pitch) > MAX_​ANGLE)) {
                Control_​RGB_​LEDs(1, 1, 0); //​ Light yellow LED as warning
         } else {
                Control_​RGB_​LEDs(0, 1, 0); //​ Light green LED -​ OK!
                Service_​COP_​WDT();
         }
   }
}

Listing 7.5  Main function for using COP WDT to reset system when board is tilted excessively.

The main function is shown in Listing 7.5. After initializing the COP WDT, the program services 
the WDT before continuing to initialize other hardware peripherals. Note that the COP is serviced 
twice during this initialization sequence. This depends on the timing of the initialization code, with 
service operations inserted within 1.024 s of each other. Here the Flash_​Reset_​Cause function and 
I2C and MMA code may take a long time to execute, so we service the COP between them.

The while loop holds the regular operation portion of the code. The code first reads the x, y, 
and z axis accelerations from the MMA8451Q sensor using the I2C communications bus. It then 
calculates the roll and pitch from these accelerations. On the basis of the absolute values of the 
angles, it determines which LEDs to light and whether to service the COP WDT.

Kinetis KL25Z Timer/​PWM Module

The timer/​PWM module (TPM) consists of a core with a 16-​bit counter and multiple channels 
that use the core counter’s value to measure the timing of input signals or generate output signals. 
Figure 7.12 shows a block diagram of the TPM circuitry. The KL25Z family of MCUs has three 
TPMs: TPM0 has six channels, whereas TPM1 and TPM2 each have two channels. Full informa-
tion is available in the documentation [3] [4].

timer/​PWM module (TPM)
Timer peripheral in Kinetis KL25Z MCU which can also generate PWM signals

TPM Core and Basic Timer Mode

The heart of the TPM is a 16-​bit preloadable up/​down counter called TPMx_​CNT. The CPWMS field 
in TPMx_​SC sets the count direction to up only (zero) or alternating between up and down (one).

The TPM status and control register (TPMx_​SC) controls the basic operation of the TPM’s 
core and is shown in Figure 7.13. The CMOD field of TPMx_​SC determines the clock source for 
the TPM. It can be an external clock signal (LPTPM_​EXTCLK), the module’s LPTPM clock, or 
it can be disconnected to disable the TPM.

The prescaler is a hardware circuit that divides down the input signal’s frequency by a factor of 
1, 2, 4, 8, 16, 32, 64, or 128, as controlled by the PS field of the TPMx_​SC register.
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The TPMx_​STATUS register, shown in Figure 7.14, indicates the status of the TPM core and 
its channels.

The MOD register defines how high the CNT register counts. A comparator detects the over-
flow condition that occurs when CNT tries to count past MOD. The controller logic responds to 
the overflow by performing the following actions:

•	 The overflow flag TOF is set to one.
•	 If the TOIE field of TPMx_​SC is set to one, the TPM will generate a TPMx interrupt.
•	 If the DMA field of TPMx_​SC is set to one, the TPM will generate TPMx DMA request.
•	 The counter is modified according to the value of the CPWMS bit:

○○ If the counter is configured for up-​counting (CPWMS is zero), then CNT is cleared to zero.
○○ If the counter is configured for up/​down-​counting (CPWMS is one), then the direction is set 

to down-​counting and CNT is decremented (to MOD-​1).

When in up/​down counting mode, counting down to zero results an underflow condition, so the 
count direction changes to up. The next clock input will increment CNT to one.
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Figure 7.12 � Timer/​PWM peripheral has a 16-​bit counter and multiple channels with input and output 
processing support.
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The TPM will overflow at a frequency of fclock/ (prescaler*(MOD+1) when in up-​counting mode, and  
fclock/ (prescaler*2*MOD) when in up/​down-​counting mode.

Example: Analog Waveform Generation

We can use the timer to generate a regular interrupt in order to generate a waveform with 
precise timing. Listing 7.6 shows the DAC-​based triangle waveform generator function from the 
previous chapter. There are two major limitations to this approach.

void Triangle_​Output(void) {
    int i=0, change=1;

    while (1) {
        DAC0-​>DAT[0].DATL = DAC_​DATL_​DATA0(i);
        DAC0-​>DAT[0].DATH = DAC_​DATH_​DATA1(i >> 8);

        i += change;
        if (i ==0) {
          change = 1;
        } else if (i == DAC_​RESOLUTION-​1) {
          change = -​1;
        }
    }
}

Listing 7.6 � Simple triangle waveform generator function from previous chapter has timing and processor 
sharing limitations.

First, the program’s structure makes it difficult to share the processor’s time with other process-
ing activities. The function Triangle_​Output uses an infinite loop and never completes. Second, 
the program’s timing behavior is very fragile. On some loop iterations the conditional code in an 
if statement will be executed (e.g. change =1, if (i == DAC_​RESOLUTION-​1), change = –​1), 
taking an additional amount of time. The DAC playback of a sample following such an iteration 
will be delayed, distorting the signal. Adding any other processing will slow down the waveform 
generator, delaying its sample generation and distorting the output signal. Changing compiler 
settings will probably change the timing of the sample playback. These changes will force the 
developer to adjust the time delay in the loop.

We can eliminate this timing variability and also simplify processor time sharing by using a 
periodic interrupt to update the DAC at regular intervals. The ISR operates asynchronously from 
the main program, improving the timing stability. Our waveform generation code is short and 
simple enough to embed within the ISR, as shown in Listing 7.7.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 DMA TOF TOIE CPWMS CMOD PS

Figure 7.13  TPMx_​SC status and control register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TOF CH5F CH4F CH3F CH2F CH1F CH0F

Figure 7.14   �TPMx_STATUS register indicates if counter has overflowed and if any channel events have 
occurred.
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void TPM0_​IRQHandler() {
   static int change=STEP_​SIZE;
   static uint16_​t out_​data=0;

   FPTD-​>PSOR = MASK(BLUE_LED_POS); //​ Debug signal: Entering ISR
   TPM0-​>SC |= TPM_​SC_​TOIE_​MASK;   //​ reset overflow flag

   //​ Do ISR work 
   out_​data += change;
   if (out_​data < STEP_​SIZE) {
                change = STEP_​SIZE;
   } else if (out_​data >= DAC_​RESOLUTION-​STEP_​SIZE) {
                change = -​STEP_​SIZE;
   }
   DAC0-​>DAT[0].DATH = DAC_​DATH_​DATA1(out_​data >> 8);
   DAC0-​>DAT[0].DATL = DAC_​DATL_​DATA0(out_​data);
   FPTD-​>PCOR = MASK(BLUE_LED_POS); //​ Debug signal: Exiting ISR
}

Listing 7.7  Interrupt service routine generates waveform using DAC.

We have modified the code to change the output data by STEP_​SIZE rather than just one, making 
the code more configurable. In this example STEP_​SIZE is 16 and DAC_​RESOLUTION is 4096.

We have also added two lines of code to set Port D bit 1 upon entering the ISR and to clear it 
upon exiting. We can monitor this signal with an oscilloscope to determine when the processor 
is executing the ISR. Remember that there is additional minor time overhead for the CPU to 
respond to the interrupt before the ISR begins executing.

void Init_​TPM(void)
{
   //​ Turn on clock to TPM
   SIM-​>SCGC6 |= SIM_​SCGC6_​TPM0_​MASK;
   //​ Set clock source for tpm
   SIM-​>SOPT2 |= (SIM_​SOPT2_​TPMSRC(1) | SIM_​SOPT2_​PLLFLLSEL_​MASK);
   //​ Load the counter and mod, given prescaler of 32
   TPM0-​>MOD = (F_​TPM_​CLOCK/​(F_​TPM_​OVFLW*32))-​1;
   //​ Set TPM to divide by 32 prescaler, enable counting (CMOD) and interrupts
   TPM0-​>SC = TPM_​SC_​CMOD(1) | TPM_​SC_​PS(5) | TPM_​SC_​TOIE_​MASK;
   //​ Enable interrupts in NVIC
   NVIC_​SetPriority(TPM0_​IRQn, 3);
   NVIC_​ClearPendingIRQ(TPM0_​IRQn);
   NVIC_​EnableIRQ(TPM0_​IRQn);
}

Listing 7.8  Function to initialize TPM to generate periodic interrupt.

Listing 7.8 shows the code that initializes the TPM0 to generate an interrupt at a frequency of 
F_​TPM_​OVERFLOW (100 kHz here), given an input clock rate of F_​TPM_​CLOCK (48 MHz). 
We use the prescaler to divide the input frequency by a factor of 32.

Figure 7.15 shows the output of the DAC (upper trace) and the debug signal, which is one 
when the ISR is executing. The period of the DAC signal is about 5.1 ms, so the frequency is 
about 196 Hz. These show the system is working correctly.

Let’s take a closer look at the timing of the signals. Figure 7.16 shows the DAC is updated 
within the ISR, as expected. The ISR takes about 1 μs to execute, so at least 10% of the CPU’s 
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Figure 7.15 � Output of ISR-​based triangle waveform generator program. Upper trace is DAC output, 
lower trace is ISR activity (Port D bit 1).

Figure 7.16 � DAC output is updated every 10 µs, when ISR is active (lower trace is high). ISR is active 
for 1 µs.
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time is used for the waveform generation. This leaves nearly 90% of the CPU time for other pro-
cessing, unlike the code of Listing 7.6.

The ISR does not always take the same amount of time to execute because of the conditional code 
within it. We can see the variability of the execution time in Figure 7.17, in which the oscilloscope’s 
infinite persistence feature is used to display all traces, erasing none. The ISR normally takes 1.0 µs to 
execute, but occasionally it takes 0.94 µs or 1.04 µs. With the CPU’s 48 MHz clock rate, these times 
represent 48, 45, and 50 clock cycles respectively. Examining the ISR code shows the DAC is updated 
after this conditional code, so the DAC output waveform will be early or late in these cases. We could 
eliminate this timing variability by updating out_​data after updating the DAC, rather than before.

TPM Channels

Each TPM channel has a status and control register (TPMx_​CnSC), shown in Figure 7.18. Each 
channel can be configured to operate in input capture or output generation mode, as controlled 
by the mode select (MSB and MSA) and edge select fields (ELSB and ELSA) in TPMx_​CnSC.

Each TPM channel also has an I/​O signal called TPMx_​CHn2 that can be used to provide a 
single-​bit digital input or output signal. When using this signal, the appropriate pin’s PCR must 
be configured to select that signal.

Figure 7.17 � Detailed view of ISR execution time signal. ISR usually takes 1.000 µs, but occasionally 
takes slightly more or less time.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CHF CHIE MSB MSA ELSB ELSA DMA

Figure 7.18  TPMx_​CnSC channel status and control register.

	2	 This is called FTMx_​CHn in the FRDM-​KL25Z documentation.
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All channel flags are also accessible through the TPMx_​STATUS register. This simplifies the 
code needed to identify which channel flags are set.

Input Capture Mode

Using input capture mode makes time measurement of input signals much less vulnerable to 
delays in processing interrupts because the channel hardware automatically captures the timer 
value without the need for any software intervention.

When the channel is in input capture mode, the input signal is monitored for a specific transi-
tion (rising edge, falling edge, or either). When that transition occurs, the value of the TPMx_​
CNT register is captured in the VAL field of the channel’s CnV register, and the channel flag CHF 
in TPMx_​CnSC is set to one. If the channel interrupt enable field (CHIE) is one, then TPMx will 
generate an interrupt. The ISR must copy the captured value out of the channel’s TPMx_​CnV 
register and use it. The ISR must also clear the channel flag by writing one to it. If the DMA field 
is set, then a DMA transfer will be requested.

We configure TPMx_​CnSC as follows:

•	 Select input capture mode by setting the MSB and MSA bits to 0:0. CPWMS must also be zero.
•	 Select which edges trigger a capture using ELSnB:ELSnA: 0:1 for rising edges, 1:0 for falling 

edges, 1:1 for both rising and falling edges.
•	 If used, enable interrupts by setting CHIE to one.
•	 If used, enable DMA by setting DMA to one.

Example: Anemometer Using Period Measurement

Let’s see how to use the input capture mode to measure the period of the input signal from the 
anemometer. This initialization code for the TPM is shown in Listing 7.9.
extern volatile int32_​t g_​anem_​period, g_​new_​data;

void Init_​TPM_​IC(void) {
   //​ Clock gating for TPM1, Port E
   SIM-​>SCGC6 |= SIM_​SCGC6_​TPM1_​MASK;
   SIM-​>SCGC5 |= SIM_​SCGC5_​PORTE_​MASK;

   //​set clock source for tpm
   SIM-​>SOPT2 |= (SIM_​SOPT2_​TPMSRC(1) | SIM_​SOPT2_​PLLFLLSEL_​MASK);

   //​load the counter and mod. 
   TPM1-​>MOD = 0xffff;

   //​set channel to input capture (rising edge) with interrupt
   TPM1-​>CONTROLS[0].CnSC = TPM_​CnSC_​ELSA_​MASK | TPM_​CnSC_​CHIE_​MASK;

   //​ Select pin mux to connect to timer
   PORTE-​>PCR[20] &= ~PORT_​PCR_​MUX(7);
   PORTE-​>PCR[20] |= PORT_​PCR_​MUX(3);

   //​ Enable interrupts, use /​128 prescaler
   TPM1-​>SC = TPM_​SC_​CMOD(1) | TPM_​SC_​PS(7) | TPM_​SC_​TOIE_​MASK;
   NVIC_​SetPriority(TPM1_​IRQn, 3);
   NVIC_​ClearPendingIRQ(TPM1_​IRQn);
   NVIC_​EnableIRQ(TPM1_​IRQn);
}

Listing 7.9  Function to initialize TPM1 with channel 0 in input capture mode.
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First, we need to set up the TPM core to count. We will set the prescaler to divide by 128, so 
the counting frequency is 48 MHz/​128 = 375 kHz. Setting MOD to 0xFFFF will set the overflow 
frequency to 375 kHz/​65536 = 5.722 Hz.

Second, we will use channel 0 in input capture mode, so rising input edges will trigger the 
capture and also generate an interrupt request. The ISR will read the captured value from 
CnV and compute the difference from the previous captured value. The difference is saved 
in a global variable g_​anem_​period for later conversion to wind speed by other (noninter-
rupt) code. The ISR will also set a flag indicating that there is new data available. Finally, if 
the time delay between two edges is too long, then the period will be set to zero to indicate 
invalid data.

We use a low-​count frequency because our anemometer pulse frequency is very slow compared 
with the MCU’s counting frequency of up to 48 MHz. If the anemometer is rotating too slowly, 
then the timer will overflow before being able to measure one anemometer period. For example, 
with a wind speed of 100 km/​h, an anemometer with a 70 mm arm length will rotate at about 63 
Hz, so the period will be 15.87 ms.

The lowest wind speed the timer can measure is 5.722 Hz×2×π×r = 2.516 m/​s, or 9 km/​h. In 
order to allow measurement of lower wind speeds, we will extend the time range in the software 
beyond the counter’s 16 bits. We configure the TPM to generate an interrupt on timer overflow. 
The ISR will increment an overflow counter for each overflow that occurs. Because MOD is set to 
0xFFFF, each overflow count represents 0x10000 timer counts. As a result, we can create a 32-​bit 
timestamp using the overflow count as the upper 16 bits and the counter value as the lower 16 bits. 
Finding the time difference simply involves taking the difference between two successive 32-​bit 
timestamps. The final ISR is shown in Listing 7.10.

void TPM1_​IRQHandler() {
     static uint32_​t overflows=0;
     static uint32_​t prev_​count=0;
     uint32_​t timer_​val;

     PTD-​>PTOR = MASK(BLUE_​LED_​POS); //​ Debug signal
     if (TPM1-​>STATUS & TPM_​STATUS_​TOF_​MASK) { //​ Overflow detected
           overflows++;
     }
     if (TPM1-​>STATUS & TPM_​STATUS_​CH0F_​MASK) {
           timer_​val = TPM1-​>CONTROLS[0].CnV; //​ Unsigned extension to 32_​bits
           timer_​val |= overflows << 16;  //​ Each overflow is 2^16 counts
           g_​anem_​period = timer_​val -​ prev_​count;
           prev_​count = timer_​val;
           g_​new_​data = 1;
     }
     if (overflows > (prev_​count >> 16) + 20) { //​ Almost no wind, so zero period
           g_​anem_​period = 0;
     }
     TPM1-​>STATUS |= TPM_​STATUS_​TOF_​MASK | TPM_​STATUS_​CH0F_​MASK |
                         TPM_​STATUS_​CH1F_​MASK; //​ reset all flags
     PTD-​>PTOR = MASK(BLUE_​LED_​POS); //​ Debug signal
}

Listing 7.10  ISR to capture rising input edge and compute period since previous rising edge.
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We will calculate the wind speed in the main thread rather than the ISR. The ISR passes the 
period information through the global variable g_​anem_​period, and also sets the g_​new_​data flag 
to indicate new data is available. Shown in Listing 7.11, the main function checks to see if g_​
new_​data is true. If so, it will call a function to calculate the wind speed. In this case, we want the 
wind speed in knots (1 kt = 1.852 km/​h = 0.514 m/​s).

#define ANEM_​R_​MM (70)
#define ANEM_​CLK_​FREQ (375000) //​ 48 MHz clock, /​128 prescaler
#define KTS_​PER_​MM_​S (0.00194384)

volatile uint32_​t g_​anem_​period=0;
volatile uint32_​t g_​new_​data=0;

float Calculate_​Windspeed_​kt(void) {
     //​ calculate windspeed in knots
     float v;

     if (g_​anem_​period > 0)
           v = KTS_​PER_​MM_​S*2*M_​PI*ANEM_​R_​MM*ANEM_​CLK_​FREQ/​g_​anem_​period;
     else
           v = 0;
     return(v);
}

int main (void) {
     float v_​w=0;

     Init_​TPM_​IC();
     while (1) {
           if (g_​new_​data) {
                  g_​new_​data = 0;
                  v_​w = Calculate_​Windspeed_​kt();
                  //​ Use the wind speed information now
           }
     }
}

Listing 7.11  Code to calculate and display wind speed.

Output Modes

Each TPM channel has logic circuits that can detect when the TPM’s counter CNT reaches a cer-
tain value. In response, the channel can change its output signal, trigger an interrupt, or trigger a 
DMA transfer (discussed in Chapter 9). The signal can change value when TPMx_​CNT overflows, 
underflows, or matches TPMx_​CnV. Various output signals are possible, including a single pulse 
with a specified width or delay, or a continuous stream of pulses with a specified duty cycle. The 
channel’s flag CHF will be set to one when TPMx_​CNT matches TPMx_​CnV. If CHIE is set, then 
TPMx will generate an interrupt.

Output Compare Mode
The most basic output mode is output compare mode. In this case, the channel will respond each 
time that CNT reaches CnV (at the beginning of the cycle). The output can be configured to 
be set to one or cleared to zero on each match. This can be used to create a pulse with a fixed 
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duration. After the first match, the output stays in its new state until the software explicitly 
changes it. The output can also be configured to toggle on each match, in which case the output 
signal is a square wave with a time offset (phase delay) determined by CnV.

PWM Signal Generation
Each channel of the TPM can generate a PWM signal with a duty cycle of CnV/​MOD. The out-
put signal’s polarity can be selected to be high-​true or low-​true. Finally, the channel’s pulses can 
be aligned by starting edges or centers.

Figure 7.19 shows an example of edge-​aligned PWM mode, with MOD = 7 and CnV = 2. The 
TPM counter CNT counts up from zero to MOD, so its count period is (MOD+1)/​fcount .

Each channel’s output is initialized (e.g. to one) each time counter CNT overflows (e.g. from  
7 to zero). CNT counts and eventually matches CnV, at which point the channel’s output signal 
TPM_​CHn is changed (e.g. to zero). CNT continues counting up and eventually matches MOD and 
overflows. At this point the cycle repeats. The resulting signal’s pulse width is proportional to CnV, 
and the duty cycle is CnV/​MOD. Note that the channel’s output’s starting edge is aligned with the 
overflow of CNT. If additional channels are enabled, they will all have starting edges at the same time.

Figure 7.20 shows an example of center-​aligned PWM mode. The TPM counter CNT alter-
nates between counting down and up, so its count period is 2*MOD/​fcount.

CNT is initialized to MOD, which also initialized the channel output (e.g. to zero). CNT then 
counts down and eventually matches CnV, at which time the channel output is toggled (e.g. zero 

CNT 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

CnV 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

CHnF 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1

TPM_CHn

Other
TPM_CHn outs

Figure 7.19  TPM operation with edge-​aligned PWM.

CNT 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 6 5 4 3 2 1 0 1 2

CnV 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

CHnF 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

TPM_CHn out

Other 
TPM_CHn outs

Figure 7.20  TPM operation with center-​aligned PWM.
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to one). CNT keeps counting and eventually reaches zero, at which point it changes count direc-
tion and starts counting up. CNT eventually matches CnV, at which time the channel output is 
toggled (e.g. one to zero). CNT continues until it reaches MOD, at which point it changes count 
direction and starts counting down. At this point the cycle repeats. The resulting signal’s pulse 
width is proportional to CnV, and the duty cycle is (2*CnV)/​(2*MOD) = CnV/​MOD.

Note that each channel’s output’s signal is centered on the transition of CNT from one to zero. 
This center alignment is useful for switching circuits that require a time delay (dead time) between 
deactivating some components and enabling others (e.g. a synchronous buck power converter).

Example: LED Dimming
Let’s drive an LED with a PWM output so we can dim it to partial brightness.

Figure 7.21 shows how the Freedom KL25Z board’s RGB LED D3 has its cathodes connected to 
the MCU, with the blue LED connected to pin PTD1. We examine the MCU datasheet to find the 
signal multiplexing and pin assignments for PTD1 [4]. Pin PTD1 can be connected to TPM0 channel 
1 (TPM0_​CH1) by setting the MUX to 4. So we will need to use TPM 0 channel 1 to drive the LED.

R8
220

R7
220

R11
220

+3V3

LED3A
Red

LED3B
Green

LED3C
Blue

PTB18

PTB19

PTD1

Figure 7.21  Freedom-​KL25Z RGB LED connections.

Listing 7.12 shows the code to initialize the TPM to drive the blue LED with a PWM signal. 
We will use edge-​aligned up-​counting mode for simplicity. Because the LED will be lit when the 
output is low, we will configure the channel to generate a low-​true output so that setting CnV to 
zero will turn off the LED. To turn the LED fully on we set CnV to MOD.

The frequency of the generated PWM signal should be at least 50 Hz to prevent visible flick-
ering. Let’s pick 500 Hz as the PWM frequency. The TPM input clock frequency of 48 MHz 
will need to be divided down to 500 Hz, so we need a division factor of 96000. We will use the 
prescaler to get this value down to no more than 65536, which is the maximum division factor for 
our 16-​bit MOD register. We will need a prescaler factor of at least 96000/​65536 = 1.46, so any 
factor of 2 or more is sufficient. Using the prescaler factor of 2 means the MOD value should be 
96000/​2 –​1 = 48000 –​ 1 = 47999. We will be able to set the LED to one of 48000 brightness levels.

Note that the larger the prescaler factor, the fewer different PWM values will be available. 
Using the prescaler factor of 128 means the MOD value should be 96000/​128 –​ 1 = 750 –​ 1 = 749. 
We would then be able to set the LED to one of only 750 brightness levels. For some applications 
this reduced resolution might be a problem.
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For this example we do not enable interrupts. However, if we did, they would occur at 500 Hz, 
which could serve as a useful timing reference for other parts of the program.

void Init_​Blue_​LED_​PWM(uint16_​t period){
   //​ Enable clock to PORTD, TPM0
   SIM-​>SCGC5 |= SIM_​SCGC5_​PORTD_​MASK;;
   SIM-​>SCGC6 |= SIM_​SCGC6_​TPM0_​MASK;

   //​ Set pin to FTM
   //​ Blue FTM0_​CH1, Mux Alt 4
   PORTD-​>PCR[BLUE_​LED_​POS] &= ~PORT_​PCR_​MUX_​MASK;
   PORTD-​>PCR[BLUE_​LED_​POS] |= PORT_​PCR_​MUX(4);

   //​ Configure TPM
   //​ Set clock source for tpm: 48 MHz
   SIM-​>SOPT2 |= (SIM_​SOPT2_​TPMSRC(1) | SIM_​SOPT2_​PLLFLLSEL_​MASK);
   //​ Load the counter and mod
   TPM0-​>MOD = period-​1;
   //​ Set TPM count direction to up with a divide by 2 prescaler 
   TPM0-​>SC = TPM_​SC_​PS(1);
   //​ Continue operation in debug mode
   TPM0-​>CONF |= TPM_​CONF_​DBGMODE(3);
   //​ Set channel 1 to edge-​aligned low-​true PWM
   TPM0-​>CONTROLS[1].CnSC = TPM_​CnSC_​MSB_​MASK | TPM_​CnSC_​ELSA_​MASK;
   //​ Set initial duty cycle
   TPM0-​>CONTROLS[1].CnV = 0;
   //​ Start TPM
   TPM0-​>SC |= TPM_​SC_​CMOD(1);
}

Listing 7.12  Function to initialize TPM0 Channel 1 to drive blue LED.

#define PWM_​PERIOD (48000)

int main (void) {
   uint16_​t i=0;
   volatile int32_​t delay;
   Init_​Blue_​LED_​PWM(PWM_​PERIOD);
   //​ Flash forever
   while (1) {
         //​ Brighten LED
         for (i=0; i<PWM_​PERIOD; i++) {
                TPM0-​>CONTROLS[1].CnV = i;
                for (delay=0; delay<100; delay++)
                       ;
         }
         //​ Dim LED
         for (i=PWM_​PERIOD-​1; i>0; i-​-​) {
                TPM0-​>CONTROLS[1].CnV = i;
                for (delay=0; delay<100; delay++)
                       ;
         }
   }
}

Listing 7.13  Code to gradually brighten and dim the blue LED.
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Listing 7.13 shows the main function that first initializes the timer and then adjusts the LED 
brightness. An infinite loop has two loops embedded within it. The first gradually brightens the 
LED by increasing the duty cycle, whereas the second gradually dims it by reducing the duty cycle. 
Note that for this simple example we use a software delay loop that increments a variable. It would 
be simple to modify this program to use the timer’s ISR to adjust the signal’s duty cycle, freeing up 
most of the processor’s time for other processing.

Summary

This chapter has introduced three types of timer peripherals, the Cortex-​M SysTick timer, the 
KL25Z COP watchdog timer, and the KL25Z TPM. The SysTick timer has a 24-​bit counter and 
can be used to serve as a time reference, or generate periodic interrupts or a time delay. The COP 
watchdog timer enables a system to automatically detect and recover from faults or bugs that 
keep the watchdog from being serviced. The TPM has a 16-​bit counter and channels. The TPM 
core has similar capabilities to the SysTick timer, but is enhanced by multiple channels that can 
be used in input capture or output generation mode. Input capture mode performs precise timing 
measurements on digital input signals. Output generation mode generates digital output signals 
(e.g. with pulse-​width modulation) with precise timing.

Exercises

1.	 Specify how the SysTick control registers must be configured so that the timer generates inter-
rupts with a frequency of 315 Hz, assuming a clock of 48 MHz. What is the actual frequency 
generated?

2.	 If the SysTick timer generates interrupts at 19199 Hz and the bus clock frequency is 48 MHz, 
what value is in the LOAD and CLOCKSOURCE fields?

3.	 If the SysTick Load register contains 0x00394391 and the CLOCKSOURCE is one, what is 
the interrupt period?

4.	 What is the lowest interrupt frequency that the SysTick timer on a KL25Z MCU can generate? 
Assume the CPU clock is 48 MHz.

5.	 What is the shortest time-​out period available with the COP? Show the register settings 
needed.

6.	 What is the longest time-​out period available with the COP? Show the register settings needed.
7.	 Specify how the control registers must be configured so that TPM2 generates interrupts at an 

approximate frequency of 2017.0101 Hz. What is the actual frequency of interrupts?
8.	 Specify how the control registers must be configured so that TPM0 channel 3 generates pulses 

that are high for 150 µs and low for 27 µs, assuming an input clock of 24 MHz. No interrupts 
are to be generated, but the pulses are to be generated on MCU Port D bit 3. What are the 
actual high and low times?
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  9.	 Specify how the control registers must be configured so that one of the channels in TPM0 
measures the delay until the pulse applied to Port A bit 0 changes from one to zero. TPM also 
must generate an interrupt at that time. Each count in CnV must represent one-​third of a 
microsecond.

10.	 What is the lowest interrupt frequency that a Timer/​PWM module on a KL25Z MCU can 
generate? Assume the CPU clock is 48 MHz.
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Overview

Serial communication simplifies the creation of complex embedded systems from separate hard-
ware components. In this chapter we examine the basic ideas of wired serial communication and 
three common types of protocols: synchronous serial, asynchronous serial, and Inter-​Integrated 
Circuit Bus (I2C). For each protocol we examine the peripherals and supporting code. We discuss 
methods to structure the software to handle the lack of timing synchronization between program 
and communication activity. We also examine tools that simplify the development of systems 
using such protocols.

serial
Organization in which parts of an item are sequentially available or active, but not simultaneously

Concepts
Why?

Embedded systems are made of multiple hardware components that must communicate with each 
other. Why communicate serially?

Some of these components are integrated into the MCU. Because they are on a single chip, 
these components can communicate directly over the system’s data bus using their native data type 
(e.g. bytes, 16-​bit half-​words, or 32-​bit words). These internal buses are called parallel because 
they have a separate wire or signal for each bit of the data type. As a result they can send a data 
item in a single transaction, resulting in fast transfers.

parallel
 Organization in which all parts of item are simultaneously available or active

Off-​chip components are needed for many embedded systems. Using parallel communication 
to reach these off-​chip parts may be fast but has disadvantages that grow as the communication 
distance or speed increase. First, the packages for the MCU and off-​chip components must have a 
pin (or pad) for each bus signal. For example, a 32-​bit bus requires 32 pins for data, multiple pins 
for addressing, and control lines to signal read or write operations. These large pin counts increase 
the package size and cost. Second, the printed circuit board (PCB) becomes more complex. A 
parallel bus has many signals that must be routed in a limited area. High-​speed buses require more 
careful design to ensure signal timing integrity. Third, if the bus must be situated off the PCB, 
then the connectors and cables must be large enough to provide one connection or wire per signal.

One way to address these challenges is to transmit the data serially rather than in parallel; we send 
a symbol representing one or several bits (rather than all the bits) at a time. For example, sending 
a 32-​bit word eight bits at a time would take four transmissions. Sending an 8-​bit byte one bit at a 
time would take eight transmissions.

symbol
A waveform or state transmitted on a communication channel to represent one or more bits of information
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Serialization reduces the number of pins needed on a chip package, the number of contacts in 
a connector, and the number of wires in cables. This enables smaller chip packages and connec-
tors, which are less expensive and often significantly lighter. The circuit board design is simplified 
because there are fewer signals to route. Because of these benefits, most MCUs support serial com-
munication, and there are many compatible components available.

How?

There are many different decisions to make when deciding how to communicate serially between 
computing systems. The Open System Interconnection (OSI) model from the International 
Organization for Standardization (ISO) defines seven layers of a communication system [1]. The 
three lowest layers are relevant for this chapter:1

•	 The physical layer (layer 1) specifies how symbols are represented on the communication 
medium (e.g. wire) as voltages or currents.

•	 The data link layer (layer 2) has two parts. The media access control determines when a node 
can transmit, defining how time on the bus is shared. The logical link control determines how 
the receiver identifies the start and end of a message from a stream of symbols on the physical 
layer. It also defines how errors are detected.

•	 The network layer (layer 3) defines how to address nodes, split up long data to fit into multiple 
messages, and handle errors, and other characteristics.

With this context, we can now examine the fundamental concepts of serial communication.

Serialization

Serialization is the conversion of data from a parallel to a serial format, whereas deserialization 
is the reverse. Each MCU and serial peripheral has internal shift registers to perform this. The 
serialized information is a stream of symbols that represent the data and control information. The 
communication protocols examined here can store one bit of data per symbol, but other examples 
improve speed by encoding multiple data or control bits in a single symbol. The rate at which the 
symbols are transmitted is called the baud rate.

Serialization
The process of converting information from parallel to serial form

deserialization
Conversion of information from serial to parallel form

baud rate
Rate at which communication symbols are transmitted. Also called symbol rate.

	1	 The upper layers of the OSI model (transport, session, presentation, application) deal with higher level issues such as reliable com-
munication and security.
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A transmitting device uses a parallel-​in-​serial-​out shift register that is first loaded with data 
from a multibit parallel input bus. To serialize the parallel data, a clock circuit applies a series of 
pulses to shift the data one bit position at a time and stream out the serial output.

A receiving device uses a serial-​in-​parallel-​out shift register. To deserialize the serial data, 
a clock circuit applies a series of pulses to load the shift register one bit at a time from the ser-
ial input. After all bits of the shift register are loaded, the data can be read from the parallel 
output bus.

Symbol Timing

In order for the deserialization to work reliably, the receiver’s clock pulses need to be applied at 
the right times. The serial data line must be sampled once per symbol (at the baud rate). This sam-
pling should be at the middle of the symbol time in order to avoid signal transitions, where the 
signal may be corrupted due to noise or slow circuits.

With a synchronous approach the transmitter’s clock signal is connected directly to the receiv-
er’s clock input. This approach is reliable but requires three signal connections: clock, data, and 
ground.

synchronous
Activities which are synchronized with each other, or a protocol which sends clocking information

With an asynchronous approach, the transmitter provides no clock signal. Instead, the receiver 
has a clock running at the same frequency as the transmitter that determines when to sample the 
signal line to capture each symbol.

asynchronous
Activities that are not synchronized with each other, or a protocol that does not send clocking information

Message Framing

How does the asynchronous receiver synchronize its clock with the transmitter’s clock if there is 
no connection? This is done by adding a framing symbol to indicate the start of the message. The 
receiver clock starts running when it detects the framing symbol (such as a start bit) and then 
samples the input in the middle of each following symbol time. A framing symbol may also be used 
to indicate the end of a message (e.g. a stop bit or a stop symbol).

framing symbol
Symbol used to indicate start or end of message
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Error Detection
Communication links are vulnerable to noise if they are long or poorly shielded. Some com-
munication protocols add information to each message to detect transmission errors. Common 
error detection methods are parity bits, checksums, and cyclic redundancy checks [2]. With 
some protocols, there is a dedicated receive error notification bit in each message, allowing 
a receiver to notify the transmitter (and all other receivers) that the message was received 
incorrectly.

Acknowledgments

Some protocols include an acknowledgment field within each message, allowing a receiver to 
signal successful message reception. Other protocols may use a separate acknowledgment message, 
or nothing at all.

acknowledgment
Device response indicating successful reception of message

Media Access Control
If there are multiple possible transmitters on a single communication bus, then the trans-
mitters need to follow a set of rules to share the time on the bus. These rules are called a 
media access control (MAC) method, and determine when a device can transmit. A mas-
ter/​slave MAC designates one device as the master. A  slave can transmit only if it has 
been given permission by the transmitter. Other MACs use arbitration, token-​passing, or  
other methods.

media access control (MAC)
Rules controlling when a node can transmit a message on shared media

Addressing
If there are multiple possible receivers on a single communication bus, then the transmitter may 
need to specify which receiver is the target of the communication. This information can be sent 
on separate select signals, or it may be included in the message itself.

Development Tools

There are several tools that will make it easier to develop embedded systems that use serial com-
munication protocols. The most basic tool is an oscilloscope, which shows a signal’s voltage over 
time. The developer needs to interpret the signals to determine the communication activity. The 
encoded data and precise timing relationships of serial communication can make it difficult to 
debug embedded systems. For example, what do the signals in Figure 8.1 mean?
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Manual interpretation is often slow, tedious, and error-​prone, so a much better tool is a logic 
analyzer with a protocol decoder. This tool interprets the signals automatically and displays them 
in an easily understood readable format.

Figure 8.2 shows the previous waveforms and their meaning when decoded according to the 
I2C communication protocol. First there is a write to device 1D of the value 01. Second there is 
a read from device 1D of 6 data bytes (00, 90, FF, F8, 41, and 70). Note that this program shows 
hexadecimal values with a prefix of h, whereas the C language uses a prefix of 0x. The values are 
the same regardless of the prefix.

A logic analyzer may also save the received data for further analysis or processing. The devel-
oper typically needs to configure the protocol decoder to match the protocol in use, for example, 
setting the data rate or identifying a clock signal. Some oscilloscopes may also include logic ana-
lyzers and protocol decoders.

There are PC-​based oscilloscopes and logic analyzers available, which are often less 
expensive than stand-​alone devices. The Analog Discovery 2 from Digilent, Inc. is shown 
in Figure 8.3 and can serve as a logic analyzer, oscilloscope, waveform generator, and many 
other types of test equipment [3]. It offers a 16-​input logic analyzer with support for various 
serial communication protocols. The PC-​based software provides the graphical interface seen 
in Figure 8.1 and Figure 8.2.

Another useful tool is a PC-​based bus interface, which allows a developer’s PC to send 
and receive messages on the bus. One example is the Bus Pirate, which connects to the PC 

Figure 8.1 � Oscilloscope shows voltage levels of signals over time.

Figure 8.2 � Logic analyzer interprets bus signals and displays message information.
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with a virtual serial port over USB [4]. The developer uses a terminal emulator program on 
the PC to control the Bus Pirate through a serial console interface. The Bus Pirate has many 
features:  support for various serial communication protocols, scripting, and the ability to 
program flash memory and MCUs. It also offers switchable power supplies, ADC input, and 
PWM output.

Software Structures for Communication

Communications make it harder to share the CPU for two reasons. First, we don’t know which 
program instruction will be executing when data is received. The program and the data reception 
are asynchronous. This means there is no timing relationship between the program’s progress and 
data reception. Second, it takes a significant amount of time to send one data item. In this time, 
the program can execute many instructions, so it is not clear at which program instruction the 
transmitter will be ready to send another data item.2 So we consider transmission to be asynchro-
nous as well.

Figure 8.3 � Multifunction device serves as 2-​channel oscilloscope, 16-​channel logic analyzer, and 
other tools. User interface program runs on a PC with USB connection. Image courtesy 
Digilent, Inc.

	2	 Technically they are synchronous, but in a system with even minor complexity identifying the specific instruction(s) requires exten-
sive (and impractical) program timing analysis each time the program is built. And there will be multiple instructions if there are 
multiple control flow paths.
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Supporting Asynchronous Communication

We would like to create a timing relationship between the program and communication events. 
One approach is to use polling. For example, the program could spin in a loop until data has been 
received. Although simple, polling makes the CPU harder to share, as discussed in Chapter 3.

Another approach is to use interrupts, providing event-​triggered processing. Every time the 
peripheral receives a data item, the peripheral will signal an interrupt and the CPU will run an 
ISR to get it. Every time the peripheral is ready to send an item, it will signal an interrupt and the 
CPU will run an ISR to start transmitting the next data item. The ISR may also execute a callback 
function (e.g. when all requested data items have been received).

We will split the work between the ISRs and the program’s tasks to provide good responsiveness 
and to simplify scaling up the program later as we add other features. Recall that the longer an ISR 
takes to run, the longer all other ISRs can be delayed. To reduce these delays, the ISR will perform 
the most time-​critical operations with the data and leave other processing for lower-​priority code (e.g. 
task code). To do this we must somehow store data between the ISRs and the rest of the program.

This stored data will flow from the producer, which generates the data, to the consumer, which 
uses the data. For transmission, the producer is the task that creates the data to send, whereas the 
consumer is the transmit ISR that loads the peripheral’s transmit data buffer. For reception, the 
producer is the receive ISR that reads the peripheral’s received data buffer, whereas the consumer 
is the task that uses that data.

We will use a data buffer to hold the producer’s output data until it is read by the consumer. 
In most cases we want the data to be delivered to the consumer in the order it was produced, 
using a first-​in, first-​out (FIFO) ordering. A queue is another name for a buffer with FIFO 
ordering. To enqueue an item is to add it to the queue. To dequeue an item is to remove it 
from the queue.

As communication systems typically provide both transmission and reception, we will need 
a queue for each direction. Figure 8.4 shows typical hardware and software components used for 
queued, interrupt-​driven communication. At the left, the serial communication peripheral inter-
faces with the communication bus signals. It generates an interrupt after receiving a data item or 
when it is ready to transmit another.

Figure 8.5 shows the case where the peripheral is ready to transmit. The transmit ISR will 
dequeue the next data item from the transmit data queue and place it in the peripheral for trans-
mission. A task enqueues data the transmit data.

Figure 8.6 shows the case where the peripheral has received data. The receiver ISR will read the 
data from the peripheral and enqueue it into the received data queue. A task will later dequeue 
the received data and use it.

Serial 
Communication 

Peripheral

ISR: Transmit

ISR: Receive Task: Use 
received  data

Task: Prepare 
data to transmit

Communication
signals

Transmit data queue

Receive data queue

Figure 8.4   �Software structure for interrupt-​driven queued communication.
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Queue Implementation

We will create a queue data structure to hold data before the receiving code can process it. 
There are various ways to implement a queue, but the approach we use here is efficient and 
simple.

The data is stored in an array, as shown in Figure 8.7. Rather than move all of the data each 
time an item is added or removed, we will use indexes to keep track of the head and tail. The 
head indicates the oldest data element, which will be read in the next dequeue operation. The tail 
indicates the free space to use when enqueueing the next element.

#define Q_​MAX_​SIZE (256)
typedef struct {
      uint8_​t Data[Q_​MAX_​SIZE];
      unsigned int Head; 	 //​ Index of oldest data element 
      unsigned int Tail; 	 //​ Index of next free space
      unsigned int Size; 	 //​ Number of elements in use
} volatile Q_​T;

Listing 8.1 � Data structure definition for queue.

Data 1

Transmitter Ready Interrupt

Write data 1 to peripheral

    transmit queue

Dequeue data 1 from 

Data 1

Transmitting data 1

:Peripheral_ISR :Peripheral :TxData Line

Figure 8.5 � Sequence of activities for data transmission.

Receiving data 1

End of data 1

Received Data Interrupt

Enqueue data 1 in receive queue

Read data 1 from peripheral

:RxData Line :Peripheral :Peripheral_ISR

Figure 8.6 � Sequence of activities for data reception.
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int Q_​Enqueue(Q_​T * q, uint8_​t d) {
      uint32_​t masking_​state;
      //​ If queue is full, don't overwrite data, but do return an error code
      if (!Q_​Full(q)) {
   	          q-​>Data[q-​>Tail++] = d;
   	          q-​>Tail %= Q_​MAX_​SIZE;

   	          //​ protect q-​>Size++ operation from preemption
   	          //​ save current masking state
   	          masking_​state = _​_​get_​PRIMASK();
   	          //​ disable interrupts
  	       _​_​disable_​irq();
   	          //​ update variable
   	          q-​>Size++;
   	          //​ restore interrupt masking state
   	          _​_​set_​PRIMASK(masking_​state);
      	       return 1; //​ success
      } else
   	    return 0; //​ failure
}
uint8_​t Q_​Dequeue(Q_​T * q) {
      uint32_​t masking_​state;

Data

Write data
to tail  

Read data
from head  

Oldest
data

Newest
data

Head

Tail

Size

2

6

4

Figure 8.7 � Queue data structure contains array to hold data, indexes for head and tail, and used size 
information.

The data structure definition for the queue is shown in Listing 8.1. Note that the entire data 
structure is defined as being volatile because it will be shared between ISRs and regular code. 
This will prevent the compiler from performing risky optimizations on this type of data structure. 
Instead, the compiler will generate code that forces the CPU to load the data values from memory 
each time the source code references the data.

How many elements should the queue be able to hold? In this example, up to 256 elements can 
be held, as defined by Q_​MAX_​SIZE. The correct value depends on how often an item may be 
enqueued, how long a delay can occur before the first item is dequeued, and how often subsequent 
items can be dequeued. We use a size field variable to track the number of elements currently in 
use. Note that we could instead calculate this value from the difference between the head and tail 
indices.
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      uint8_​t t=0;
      //​ Check to see if queue is empty before dequeueing
      if (!Q_​Empty(q)) {
   	          t = q-​>Data[q-​>Head];
   	          q-​>Data[q-​>Head++] = '_​'; //​ empty unused entries for debugging
   	          q-​>Head %= Q_​MAX_​SIZE;

   	          //​ protect q-​>Size-​-​ operation from preemption
   	          //​ save current masking state
   	          masking_​state = _​_​get_​PRIMASK();
   	          //​ disable interrupts
   	          _​_​disable_​irq();
   	          //​ update variable
   	          q-​>Size-​-​;
   	          //​ restore interrupt masking state
   	          _​_​set_​PRIMASK(masking_​state);
      }
      return t;
}

Listing 8.2 � Functions for enqueueing and dequeueing data.

The enqueue and dequeue operations are shown in Listing 8.2. Adding an element to the queue 
will update the tail, whereas removing an element will update the head. The update operations 
are simply increments that are wrapped around to zero when the end of the array is reached. This 
type of implementation is called a ring buffer. Making the number of array elements a power of 
two will simplify the wrapping operation to simply masking off bits (e.g. with a bitwise and oper-
ation). Otherwise the modulus (remainder) operation will need to be performed, which is likely 
to be computationally expensive.

This queue is expected to share data between multiple threads with preemption due to inter-
rupts. This introduces the risk of data corruption due to non-atomic access to the queue fields. As 
discussed in Chapter 3, for an ARM Cortex-​M (or any other load/​store architecture) processor to 
modify a variable stored in memory, that variable must be loaded from memory into a register first. 
The register can then be modified and stored back to memory. This sequence of code is a critical 
section that is vulnerable to corruption based on timing. Consider the case where a function has 
called Q_​Dequeue. The Size field has a value of N, and is loaded from memory into a register to be 
decremented to N-​1. Before the new value is stored to memory, another character arrives, causing 
the CPU to preempt Q_​Dequeue and execute the ISR. The ISR calls Q_​Enqueue, which loads N 
(the old value of Size) from memory into a register, increments it to N+1, and stores it to memory. 
Q_​Enqueue completes, the ISR completes, and Q_​Dequeue resumes executing, storing the value 
N−1 to memory. Size is now wrong: it should be N, but is N−1.

We protect the critical section of the code by disabling interrupts during its execution. To do this, 
our code first saves the current interrupt masking state using _​_​get_​PRIMASK, and then disables 
interrupts using _​_​disable_​irq. After executing the critical section, the code restores the previous 
interrupt masking state using _​_​set_​PRIMASK. These functions are defined in CMSIS-​CORE.

Further examination would show that none of the other fields in the Q_​T structure is vulner-
able to Q_​Enqueue preempting Q_​Dequeue, or Q_​Dequeue preempting Q_​Enqueue. However, 
if we allow Q_​Enqueue to preempt Q_​Enqueue, the operations on Tail and Data become critical 
sections and must be protected. Similarly, allowing Q_​Dequeue to preempt Q_​Dequeue makes the 
operations on Head and Data critical sections that must be protected.



Embedded Systems Fundamentals with ARM Cortex-M based Microcontrollers: A Practical Approach220

220

void Q_​Init(Q_​T * q) {
    unsigned int i;
    for (i=0; i<Q_​MAX_​SIZE; i++)
       q-​>Data[i] = 0; //​ To simplify our lives when debugging
    q-​>Head = 0;
    q-​>Tail = 0;
    q-​>Size = 0;
}
int Q_​Empty(Q_​T * q) {
    return q-​>Size == 0;
}
int Q_​Full(Q_​T * q) {
    return q-​>Size == Q_​MAX_​SIZE;
}
int Q_​Size(Q_​T * q) {
        return q-​>Size;
}

Listing 8.3 � Functions for queue initialization and status checks.

Finally, the code for initialization and status checks is shown in Listing 8.3.

Queue Use

In order to use the queue, we need to decide whether we want our code to block and wait for data 
to be available (for dequeueing) or space to be available (for enqueueing). If our code should not 
block, then we will simply test the condition to determine whether to perform the queue opera-
tion. If the condition is true, then the code continues with the queue operation. If the condition 
is not true, then the code needs to defer this work for later. The actual approach will depend on 
the specifics of the application.

If our code should block, then we use a loop to wait for the appropriate condition to become 
true before performing the queue operation. Note that this blocking operation does not share the 
processor. When using a finite state machine to allow other code to run, this test code should be 
a separate state. If the condition is not true yet, the state should end and be repeated on the next 
call. If the condition is true, the code can continue with the queue operation and then advance 
to the next state. When using a task scheduler, if the condition is not true, the code should yield 
the processor briefly to other tasks.

Operations that might block should not be performed in interrupt handlers because they can 
introduce sporadic timing delays that are difficult to repeat and therefore debug. Instead, the han-
dler should be prepared to discard the data (or handle it in some other way) and signal an error to 
the rest of the application.

Serial Communication Protocols and Peripherals

We can now examine three types of serial communication protocols and the corresponding periph-
erals. We start with a basic approach (synchronous serial), then advance to asynchronous serial 
and finish with I2C, which offers addressing and other higher-​level features.
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Synchronous Serial Communication

Protocol Concepts

Serial peripheral interface (SPI) is a type of synchronous serial communication with a master and 
one or more slaves (Figure 8.8). Typically the MCU is the master and peripheral devices are slaves. 
Some common slave SPI devices are ADCs, accelerometers, LCD controllers, and magnetom-
eters. An MCU might instead be configured to operate as a slave, for example, to create a smart 
MCU-​based peripheral subsystem in a larger system with a different MCU serving as the master.

SPI communication between a master and slaves uses three signals (clock and two data signals), 
a select signal for each slave and ground.

•	 The clock signal (SPSCK or SCK) indicates when data is to be sampled.
•	 The MOSI data signal is the master output and slave input.
•	 The MISO data signal is the master input and slave output.
•	 The master asserts the select line of the slave targeted for communication. This signal is typi-

cally active-​low.

If bidirectional communication between the master and slaves is not needed, only one data line is 
needed (MOSI or MISO), depending on data transfer direction.

Communication
Figure 8.9 shows an example of communication between a master and a slave. The master selects a 
particular slave by asserting its slave select line. The master asserts the clock signal to indicate when 
its data output signal (MOSI) is valid and should be sampled by the slave. At the same time, the mas-
ter can receive data from the slave on the MISO signal (not shown in the figure). Each clock pulse 
exchanges one bit between the shift registers of the master and the slave. For byte SPI transmissions, 
one byte is exchanged with every eight clock pulses. After the last new bit is shifted in, the receiver 
sets a status flag indicating completed reception. It may also generate an interrupt request. Finally, the 
slave select line can be released, though in some cases it is not, as described in further sections.

Slave 2

SPI Shift 
Register

Master
Slave
Select

Clock 
Generator

SPI Shift 
Register

Master Out,
Slave In

Master In,
Slave Out

SPI Clock

Slave 1 Select

Slave 1

SPI Shift 
Register

Slave 2 Select

Figure 8.8 � Overview of SPI system with master and two slave devices.



Embedded Systems Fundamentals with ARM Cortex-M based Microcontrollers: A Practical Approach222

222

Clock Phase and Polarity
There are four different versions of SPI, based on the relationship between the clock and the 
data. Different peripherals may use different versions of SPI, so it is important to select the cor-
rect version. The clock polarity determines whether the clock signal is active-​high or active-​low.

The clock phase determines when the slave starts transmitting valid data on the MISO signal. 
In one case, the slave and master both transmit valid data when slave select is asserted. The first 
clock edge from inactive to active indicates the middle of the bit time, causing the master to sam-
ple MISO and the slave to sample MOSI. The next clock edge (from active to inactive) advances 
the shift registers. The slave select signal can remain active between transfers.

In the other case, data is not transmitted on MOSI or MISO until the inactive-​to-​active clock 
edge. It is sampled on the active-​to-​inactive clock edge. In addition, the slave select signal needs 
to go inactive between transfers.

KL25Z SPI Peripherals

The KL25Z128 microcontroller has two identical SPI peripherals, called SPI0 and SPI1. Each 
has the structure shown in Figure 8.10, with the SPI shift register at the core. Data to transmit is 
placed in the transmit buffer, and received data is read from the receive buffer. When the periph-
eral operates in the master mode, the shift register is clocked by the clock generator module.

The SPIx_​C1 control register, shown in Figure 8.11, configures various aspects of the peripheral.

•	 MSTR selects whether the SPI module acts as a master (one) or slave (zero).
•	 LSBFE controls which data bit is transmitted first: the LSB (one) or the MSB (zero).
•	 CPOL and CPHA define clock polarity and phase. A CPOL value of zero selects an active-​high 

clock, whereas one selects an active-​low clock. A CPHA value of zero indicates valid data is 
transmitted starting with the slave select signal, so data can be sampled on the first clock edge 
(inactive to active). A value of one causes data to be sampled on the second clock edge (active 
to inactive).

•	 If the SSOE bit is one, then the SS pin will be asserted automatically during transmission.

The SPIx_​C2 register controls other features such as DMA and operation in low-​power, bidirectional, 
and stop modes. Please refer to Chapter 37 in the reference manual for further details [5].
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Figure 8.9 � Master sending data 0x47 (01000111) to slave. Data is valid on the rising edge of the clock 
signal.
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The SPIx_​D register is used to access both the transmit buffer and the receive buffer. A write-​
to SPIx_​D writes to the transmit buffer whereas a read of SPIx_​D reads from the receive buffer.

To use an SPI peripheral, first enable its clock in the system integration module (SIM) register 
SIM_​SCGC4 and then set the SPI system enable (SPE) bit in SPIx_​C1.

Transmitter Baud Rate Generator
The master sets the rate at which data bits are shifted across the MOSI and MISO signals 
(Figure 8.12). The master’s baud rate is derived by prescaling the bus clock by a factor of 1–​8 and 
then dividing it by a factor of 21–​29 (i.e. 2, 4, 8, 16, ... , 256, 512). The prescaler factor is deter-
mined by the SPPR field of SPIx_​BR and is SPPR+1. The division factor is set by SPR in SPIx_​
BR, and is 2SPR+1. The resulting baud rate is:

	 Baud Rate
SPPR

BusClock
SPR=

+( ) × +

f
1 2 1

Status and Interrupts
The SPI peripheral indicates events using status flags and interrupts (Figure 8.13). The SPIx_​S 
register holds four status flags.
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Figure 8.10   �The KL25Z SPI peripheral structure is built around the SPI shift register.
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Figure 8.11 � SPIx_​C1 control register configures peripheral.
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Figure 8.12 � SPIx_​BR register controls the baud rate of communication for master.
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•	 The SPTEF bit will be set if the SPIx transmit buffer is empty, indicating the transmit buffer 
can be loaded with new data. It is cleared by hardware automatically by the sequence of the 
code reading SPIx_​S (when SPTEF is one) and then writing to SPIx_​D.

•	 The SPRF bit will be set at the end of an SPI transfer when the SPIx receive buffer is full. It is 
cleared by hardware automatically by the sequence of the code reading SPIx_​S (when SPRF is 
one) and then reading SPIx_​D.

•	 The SPMF bit indicates that received data matches the contents of the SPIx_​M register.
•	 The MODF bit indicates a mode fault, in which multiple masters attempt to drive the SPI clock 

and MOSI signals.

The SPI module can generate an interrupt request under certain conditions. Two important 
conditions are:

•	 If SPI transmit interrupt enable (SPTIE) is one, then an interrupt will generated when SPTEF 
is set.

•	 If SPIE is one, then an interrupt will be generated when SPRF is set.

Transmission/​Reception Activity
Listing 8.4 shows the basic software to transmit and receive SPI data using polling. Before it 

can transmit, the MCU must first wait until the transmitter buffer is empty, which is indicated by 
the SPTEF flag. The MCU can then write the byte to the SPI data register. This write triggers the 
simultaneous transmission and reception of bytes to MOSI and from MISO and also clears the 
SPTEF flag. When the entire byte has been received, the receiver buffer is marked full, indicated 
by the SPRF flag. The MCU can then read the received data from the SPI data register, which 
also clears the SPRF flag.

while(!(SPI1-​>S & SPI_​S_​SPTEF_​MASK))
      ; //​Wait for transmit buffer empty 
SPI1-​>D = d_​out;

while (!(SPI1-​>S & SPI_​S_​SPRF_​MASK))
      ; //​ wait for receive buffer full
d_​in = SPI1-​>D;

Listing 8.4   �Code to transmit and receive one byte with SPI using polling.

Interrupts can be used to improve system responsiveness. Recall that data is loaded into the 
transmit buffer by writing to SPIx_​D, which in turn starts simultaneous data transmission and 
reception. When the byte exchange is complete, the receive buffer is full, setting the SPRF flag 
and triggering an interrupt. The SPI ISR reads the received data from SPIx_​D and can load a new 
byte to transmit.

7 6 5 4 3 2 1 0

SPRF SPMF SPTEF MODF 0

Figure 8.13 � SPIx_​S status register indicates which SPI events have occurred.
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If even faster transmission is needed, the communication can be accelerated by using the 
transmit buffer empty flag (SPTEF) to trigger an interrupt. SPTEF is set when the transmit 
buffer is empty and ready to accept new data. This happens as soon as the transmit buffer is 
copied into the SPI shift register. The ISR needs to check the flags to determine which flag is 
set. If SPTEF is set, the ISR can load the new data into the transmit buffer immediately. The 
shift register is starting to receive the new data on the MISO signal, so that data is not available 
yet. However, if SPRF is set, then the data received from the previous transmission can be read 
from SPIx_​D.

Other Features
There are several other features available that we do not cover here. For example, the peripheral 
can generate an interrupt if the received data matches the value in the SPIx_​M (match) register. 
This is useful for creating a slave device that recognizes a specific address. There is a low-​power 
mode that can operate even if the rest of the MCU is in sleep mode.

Example: SPI Loopback Test

We can examine the basic SPI communication with a loopback test. We will connect the output 
data signal MOSI to the input data signal MISO. The program will then transfer a data byte. If 
the received data matches the transmitted data, the program will light the green LED. Otherwise 
the red LED will be lit.

void Init_​SPI1(void) {
      //​ enable clock to SPI1
      SIM-​>SCGC4 |= SIM_​SCGC4_​SPI1_​MASK;
      SIM-​>SCGC5 |= SIM_​SCGC5_​PORTE_​MASK;

      //​ disable SPI1 to allow configuration
      SPI1-​>C1 &= ~SPI_​C1_​SPE_​MASK;

      //​ set PTE2 as SPI1_​SCK -​-​ ALT2
      PORTE-​>PCR[2] &= ~PORT_​PCR_​MUX_​MASK;
      PORTE-​>PCR[2] |= PORT_​PCR_​MUX(2);
      //​ set PTE3 as SPI1_​MOSI -​-​ ALT5
      PORTE-​>PCR[3] &= ~PORT_​PCR_​MUX_​MASK;
      PORTE-​>PCR[3] |= PORT_​PCR_​MUX(5);
      //​ set PTE1 as SPI1_​MISO -​-​ ALT5
      PORTE-​>PCR[1] &= ~PORT_​PCR_​MUX_​MASK;
      PORTE-​>PCR[1] |= PORT_​PCR_​MUX(5);
      //​ set PTE4 as SPI1_​PCS0 -​-​ ALT2
      PORTE-​>PCR[4] &= ~PORT_​PCR_​MUX_​MASK;
      PORTE-​>PCR[4] |= PORT_​PCR_​MUX(2);

      //​ Select master mode, enable SS output
      SPI1-​>C1 = SPI_​C1_​MSTR_​MASK | SPI_​C1_​SSOE_​MASK;
      SPI1-​>C2 = SPI_​C2_​MODFEN_​MASK;
      //​ Select active high clock, first edge sample
      SPI1-​>C1 &= ~SPI_​C1_​CPHA_​MASK;
      SPI1-​>C1 &= ~SPI_​C1_​CPOL_​MASK;
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      //​ BaudRate = BusClock /​ ((SPPR+1)*2^(SPR+1)) 
      SPI1-​>BR = SPI_​BR_​SPPR(2) | SPI_​BR_​SPR(1);

      //​ enable SPI1
      SPI1-​>C1 |= SPI_​C1_​SPE_​MASK;
}

Listing 8.5 � Code to initialize SPI1 peripheral.

The initialization code in Listing 8.5 configures the SPI1 peripheral and connects its signals 
to MCU pins (SCK: PTE2, MISO: PTE1, MOSI: PTE3, CS0: PTE5). The baud rate is set to 48 
MHz/​(3×22) = 48 MHz/​12 = 4 MHz, or 250 ns per bit. Interrupts are not used. Be sure to connect 
MOSI (PTE3) and MISO (PTE1) for this test.

uint8_​t Test_​SPIsend(uint8_​t d_​out)
{
      while(!(SPI1-​>S & SPI_​S_​SPTEF_​MASK))
      	 ; //​Wait for transmit buffer empty 
      SPI1-​>D = d_​out;

      while (!(SPI1-​>S & SPI_​S_​SPRF_​MASK))
      	 ; //​ wait for receive buffer full
      return SPI1-​>D;
}

Listing 8.6   �Code to send and receive one byte with SPI1 with polling.

The function test_​SPI_​Loopback performs SPI communication with polling, as shown in 
Listing 8.6. The function first waits until the transmitter buffer is empty (indicated by the SPTEF 
flag). At that point the output data d_​out is written to the SPI data register. The code then waits 
until the receiver buffer is full (indicated by the SPRF flag). The code reads the received data from 
the SPI data register and returns it to the calling function.

void Test_​SPI_​Loopback(void) {
   	 uint8_​t out='A', in;
   	 while (1) {
   		  in = Test_​SPIsend(out);
   		  if (in != out) {
      			  //​ Red: error, data doesn't match
      			  Control_​RGB_​LEDs(1, 0, 0);
   		  } else {
      			  //​ Green: data matches
      			  Control_​RGB_​LEDs(0, 1, 0);
   	 }
   	 out++;
   	 if (out > 'z')
      		 out = 'A';
   	 }
}

Listing 8.7 � Code to test SPI transmission and reception.
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The main function initializes SPI1 and the GPIO ports for the LEDs, after which it calls the test 
code in Listing 8.7. This repeatedly sends out a character and lights the LED based on whether the 
received and transmitted values match.

Asynchronous Serial Communication

Protocol Concepts

Asynchronous serial communication works without a dedicated clock signal. Instead, both the trans-
mitter and receiver have clock generators that must be configured to run at the same speed. The generic  
name for a peripheral that supports this is universal asynchronous receiver/transmitter (UART).

universal asynchronous receiver/transmitter (UART)
Peripheral for asynchronous serial communications

Asynchronous communication typically allows transmission and reception to occur independ-
ently. This is different from SPI, where both the master and slave transmit and receive simultan-
eously. A UART contains separate hardware for the transmitter and receiver.

A general UART message is shown in Figure 8.14 and contains these fields:

•	 Because there is no clock signal, the message includes a start bit (a logic zero) to synchronize 
the receiver’s clock to the incoming message and start message reception.

•	 The data field of the message is typically 8 bits, but other sizes may also be supported. Data may 
be sent LSB first or MSB first.

•	 Parity helps detect errors in data transmission and can be enabled on UARTs. The parity of a 
message is determined by the total number N of one bits in the data character and the parity bit. 
If N is even, then the message has even parity. If N is odd, then the message has odd parity. The 
UARTs of the transmitter and receiver are configured to expect each received message to have 
the correct parity (e.g. odd). When parity is enabled, the transmitter computes the parity of the 
data and then adjusts the parity bit to one or zero to match the specified communication parity 
(e.g. odd). The receiver calculates the parity of the received data and parity bit, and verifies it 
matches the expected parity (e.g. odd). If it does not (e.g. there were an even number of ones 
received in the message), then the UART signals a parity error for the software to handle.

•	 One or more stop bits with a value of logic one are added to help the receiver detect timing 
errors. If a zero is received for any stop bit, then the receiver will indicate an error so the soft-
ware reacts appropriately.

The UART hardware is more complex than the SPI hardware, with the addition of the hardware 
for the receiver clock generator, framing, and parity.

Start 

(0) D0 D1 D2 D3 D4 D5 D6 D7 Parity
Stop

(1)

Figure 8.14   �Contents of asynchronous serial communication message.
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Figure 8.15 shows a sequence of three bytes (“1_2”) transmitted by a UART.

KL25Z UART Peripherals

The KL25Z128 microcontroller has three UART peripherals. Here we cover UART0, which is 
similar to the other UART peripherals but has more features.

The UART contains a baud rate generator, a transmitter, and a receiver. The baud rate generator 
divides down an input clock signal to a lower frequency for UART communication. The transmit-
ter uses a shift register to convert the input data (from UARTx_​D), framing bits and optional parity 
information into a serial stream of bits. The receiver uses a similar shift register to convert the serial 
bit stream into a set of parallel bits. An edge detection circuit is used to identify the start bit and start 
shifting data in at the correct time. Error detection circuitry identifies framing, parity, and other errors.

The following fields in UART0_​C1 (shown in Figure 8.16) are frequently used:

•	 The M field determines whether data is eight bits long (zero) or nine bits long (one).
•	 When one, PE field enables parity generation and checking.
•	 When parity is enabled (PE = 1), the PT field selects even parity (zero) or odd parity (one).

The following fields in UART0_​C2 (Figure 8.17) are frequently used:

•	 TIE, TCIE, RIE, and ILIE control whether certain events trigger interrupts, and are discussed 
in subsequent pages.

•	 The transmitter and receiver can be enabled or disabled with TE and RE fields. They must be 
disabled to access some control registers.

The following fields in UART0_​C3 (Figure 8.18) are frequently used:

7 6 5 4 3 2 1 0

LOOPS DOZEEN RSRC M WAKE ILT PE PT

Figure 8.16 � Contents of UART0_ C1 control register.

7 6 5 4 3 2 1 0

TIE TCIE RIE ILIE TE RE RWU SBK

Figure 8.17 � Contents of UART0_ C2 control register.

Figure 8.15 � Example of serial data (“1_ 2”) captured by logic analyzer.
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•	 ORIE, NEIE, FEIE, and PEIE control whether certain errors trigger interrupts, and are discussed 
in further pages.

The UARTx_​D register is used to access both the transmit buffer and the receive buffer. 
A write-​to UARTx_​D writes to the transmit buffer whereas a read-​from UARTx_​D reads from 
the receive buffer.

Baud Rate Generator
Each UART has a clock that determines the baud rate for the transmitter and the receiver. The 
bus clock (e.g. 24 MHz) is divided by a 13-​bit value from SBR to determine the oversampling 
clock frequency, which is then divided by the oversampling factor to set the actual baud rate for 
communication.

The SBR value is split across two registers: BDH holds the upper five bits of SBR and BDL 
holds the lower eight bits. The oversampling rate can be set to any value N between 4 and 32 
by writing N-​1 to the OSR field. A 16x oversampling rate is the default. The resulting baud 
rate is:

	 Baud Rate
SBR OSR

BusClock=
× +( )
f

1

Status and Interrupts
The UART peripheral indicates when events have occurred using status flags and interrupts. The 
UART0_​S1 (Figure 8.19) status register holds the following flags for transmission:

•	 The TDRE flag indicates when the transmit data buffer has room to accept another character 
(via UART_​D).

•	 The TC flag indicates when transmission is complete.

UART0_​S1 holds the following flags for reception:

•	 The RDRF flag indicates there is data to read from the receive buffer (via UART_​D).
•	 The IDLE flag indicates the receive data line is idle.

7 6 5 4 3 2 1 0

R8T9 R9T8 TXDIR TXINV ORIE NEIE FEIE PEIE

Figure 8.18 � Contents of UART0_​C3 control register.

7 6 5 4 3 2 1 0

TDRE TC RDRF IDLE OR NF FE PE

Figure 8.19 � Contents of UART0_ S1 status register.
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UART0_​S1 holds the following flags for errors:

•	 The PF flag indicates a parity error was detected during reception.
•	 The FE flag indicates a framing error was detected during reception.
•	 The OR flag indicates that the receive buffer’s data was not read before new data was 

received.
•	 The NF flag indicates noise was detected by the receiver. This can occur when oversampling is 

enabled, in which the receiver samples each bit multiple times.

The following fields in UART0_​S2 (Figure 8.20) are frequently used:

•	 MSBF determines if data is transmitted MSB first (one) or LSB first (zero).
•	 When set to one, RXINV inverts received data.

A UART can generate an interrupt in response to these three types of events if the appropriate 
interrupt enable bits are set.

•	 Transmit events: Setting TIE to one enables interrupts when the transmit data register is 
empty (TDRE is one). TCIE enables interrupts when transmission is complete (TC is one).

•	 Receive events: Setting RIE to one enables interrupts when the receive data register is full (RDRF 
is one). Other receive events are possible as well, but are not discussed further here.

•	 Error events: Setting ORIE, NEIE, FEIE, PEIE to one enables interrupts when the correspond-
ing error flag is set:

Other Features
There are many other features available that we do not cover here, such as single-​wire mode, loop 
mode, transmit data inversion, communication protocol support, wake-​up on idle line, address 
mark or match address. Further information is available in the reference manual [5].

Example: Communicating with a PC

Let’s see how to use asynchronous serial communication between the KL25Z MCU and a terminal 
program on a PC. The FRDM-​KL25Z development board connects the target MCU’s UART0 
with a UART in the OpenSDA debug MCU, as shown in Figure 8.21. The debug MCU provides 
a virtual serial port service over its USB connection with the PC. The OpenSDA MCU’s UART 
is configured to run at 115,200 baud, with no parity and one stop bit.

7 6 5 4 3 2 1 0

LBKDIF RXEDGIF MSBF RXINV RWUID BRK13 LBDKDE RAF

Figure 8.20 � Contents of UART0_​S2 status register.
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#define UART_​OVERSAMPLE_​RATE  (16)
#define SYS_​CLOCK        (48e6)

void Init_​UART0(uint32_​t baud_​rate) {
    uint16_​t sbr;

    //​ Enable clock gating for UART0 and Port A
    SIM-​>SCGC4 |= SIM_​SCGC4_​UART0_​MASK;
    SIM-​>SCGC5 |= SIM_​SCGC5_​PORTA_​MASK;

    //​ Make sure transmitter and receiver are disabled before init
    UART0-​>C2 &= ~UART0_​C2_​TE_​MASK & ~UART0_​C2_​RE_​MASK;

    //​ Set UART clock to 48 MHz clock 
    SIM-​>SOPT2 |= SIM_​SOPT2_​UART0SRC(1);
    SIM-​>SOPT2 |= SIM_​SOPT2_​PLLFLLSEL_​MASK;

    //​ Set pins to UART0 Rx and Tx
    PORTA-​>PCR[1] = PORT_​PCR_​ISF_​MASK | PORT_​PCR_​MUX(2); //​ Rx
    PORTA-​>PCR[2] = PORT_​PCR_​ISF_​MASK | PORT_​PCR_​MUX(2); //​ Tx

    //​ Set baud rate and oversampling ratio
    sbr = (uint16_​t)((SYS_​CLOCK)/​(baud_​rate * UART_​OVERSAMPLE_​RATE));
    UART0-​>BDH &= ~UART0_​BDH_​SBR_​MASK;
    UART0-​>BDH |= UART0_​BDH_​SBR(sbr>>8);
    UART0-​>BDL = UART0_​BDL_​SBR(sbr);
    UART0-​>C4 |= UART0_​C4_​OSR(UART_​OVERSAMPLE_​RATE-​1);

    �//​ Disable interrupts for RX active edge and LIN break detect, select one 
stop bit

    UART0-​>BDH |= UART0_​BDH_​RXEDGIE(0) | UART0_​BDH_​SBNS(0) | UART0_​BDH_​LBKDIE(0);
 
    //​ Don't enable loopback mode, use 8 data bit mode, don't use parity
    UART0-​>C1 = UART0_​C1_​LOOPS(0) | UART0_​C1_​M(0) | UART0_​C1_​PE(0);
    //​ Don't invert transmit data, do enable interrupts for errors
    UART0-​>C3 = UART0_​C3_​TXINV(0) | UART0_​C3_​ORIE(1)| UART0_​C3_​NEIE(1)
            | UART0_​C3_​FEIE(1) | UART0_​C3_​PEIE(1);
 
    //​ Clear error flags
    UART0-​>S1 = UART0_​S1_​OR(1) | UART0_​S1_​NF(1) | UART0_​S1_​FE(1) | UART0_​S1_​PF(1);

FRDM-KL25Z

OpenSDA MCU (K20) Target MCU (KL25)

115,200 baud,
8 data bits,
no parity,
1 stop bit

USB

PTA1

PTA2
UART UART0

PC

Figure 8.21   �OpenSDA MCU provides a virtual serial port between PC and target MCU’s UART0.
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    //​ Send LSB first, do not invert received data
    UART0-​>S2 = UART0_​S2_​MSBF(0) | UART0_​S2_​RXINV(0);

    //​ Enable UART transmitter and receiver
    UART0-​>C2 |= UART0_​C2_​TE(1) | UART0_​C2_​RE(1);
}

Listing 8.8 � Code to initialize UART0.

The initialization code in Listing 8.8 will configure UART0 to communicate with the OpenSDA 
debug MCU. It does the following:

•	 Enables clock gating for UART0 and Port A.
•	 Disables UART receiver and transmitter to allow access to control registers.
•	 Selects oscillator clock source for baud rate generator.
•	 Connects PTA1 and PTA2 to U0Rx and U0Tx respectively.
•	 Sets the serial baud rate divider value to 48 MHz/​(115,200 baud × 16), which rounds to 26.
•	 Sets the oversampling factor to 16.
•	 Configures for eight data bits, no parity and one stop bit.
•	 Enables the transmitter and receiver.

Program access to the UART can be based on polling or interrupts. Polled communication is 
simple but does not share the CPU’s time as with interrupts.

Polled Communication
To demonstrate polled communication, we will use the program in Listing 8.9. The pro-
gram first initializes the UART with the function from Listing 8.8 and then enters a loop. 
Within the loop, the program waits to receive a character. The function UART0_​Receive_​
Poll will return the character after it has been received by the UART. The character is incre-
mented by one and sent back with the function UART0_​Transmit_​Poll. We can try this 
program out on a PC with a terminal emulator program that communicates with the virtual  
serial port.

The function UART0_​Transmit_​Poll in Listing 8.9 needs to ensure the transmit buffer is empty 
before trying to write a character to that buffer. This is indicated by a TDRE flag value of one. At 
this point the code can write the data to transmit to UARTx_​D (Figure 8.22). The code will not 
advance past the polling loop until the transmit buffer is empty.

The function UART0_​Receive_​Poll in Listing 8.9 needs to ensure there is data in the receive 
buffer before trying to read it out. This is indicated by an RDRF value of one. At this point the 
code can read the received data from UARTx_​D. The code will not advance past the polling loop 
until the receive buffer is full (i.e. a character is received).

void UART0_​Transmit_​Poll(uint8_​t data) {
        while (!(UART0-​>S1 & UART0_​S1_​TDRE_​MASK))
          ;
        UART0-​>D = data;
}
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Figure 8.22   �UART receives character “a,” program adds one (changing character to “b”) and transmits it 
out UART.

uint8_​t UART0_​Receive_​Poll(void) {
        while (!(UART0-​>S1 & UART0_​S1_​RDRF_​MASK))
          ;
        return UART0-​>D;
}

void main(void) {
    uint8_​t c;

    Init_​UART0(115200);

    while (1) {
        c = UART0_​Receive_​Poll();
        UART0_​Transmit_​Poll(c+1);
    }
}

Listing 8.9 � Code for polled serial communication to echo back received character + 1.

Interrupt-​Driven Communication
Now let us use interrupt-​driven communication to create a program that will respond to each 
character received with a message “You pressed x.” The program structure is shown in Figure 
8.23. The TxQ queue will store outbound data from the main thread until the UART is ready 
to transmit it. The RxQ will store received data from the UART until the main thread is able to 
process it.

UART UART0_IRQ
_Handler

mainTxD, RxD

TxQ: Transmit data queue

RxQ: Receive data queue

Figure 8.23   �Overview of interrupt-​driven UART communication.
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uint8_​t buffer[80], c, * bp;

while (1) {
      //​ blocking receive
      while (Q_​Size(&RxQ) == 0)
   		     ; //​ wait for character to arrive
      c = Q_​Dequeue(&RxQ);

      //​ blocking transmit
      sprintf((char *) buffer, "You pressed %c\n\r", c);
      //​ enqueue string
      bp = buffer;
      while (*bp != '\0') {
      //​ copy characters up to null terminator
      		  while (Q_​Full(&TxQ))
            		  ; //​ wait for space to open up
   		     Q_​Enqueue(&TxQ, *bp);
   		     bp++;
      }
      //​ start transmitter if it isn't already running
      if (!(UART0-​>C2 & UART0_​C2_​TIE_​MASK)) {
   		     UART0-​>C2 |= UART0_​C2_​TIE(1);
      }
}

Listing 8.10 � Code in main thread for echoing serial input with interrupts; initialization code has been 
removed.

The main code is shown in Listing 8.10. An infinite loop waits until there is data in the receive 
queue. At that time a character is dequeued and a message to transmit is formed and loaded into 
the transmit queue. Note that this example code explicitly blocks on the receive queue until a 
character is received, or on the transmit queue until there is space available. A practical approach 
would use a state machine or scheduler to share the processor rather than block.

       Q_​Init(&TxQ);
       Q_​Init(&RxQ);

       NVIC_​SetPriority(UART0_​IRQn, 2); //​ 0, 1, 2, or 3
       NVIC_​ClearPendingIRQ(UART0_​IRQn);
       NVIC_​EnableIRQ(UART0_​IRQn);

       UART0-​>C2 |= UART_​C2_​RIE(1);

Listing 8.11 � Additional code needed for Init_​UART0() to use interrupts. This code is inserted 
immediately before enabling the UART transmitter and receiver.

We will configure the MCU so the UART generates an interrupt when ready to transmit a char-
acter, when a character has been received, or when there is an error. The initialization code of Listing 
8.8 needs to be modified slightly, with the additions shown in Listing 8.11. To enable interrupt-​driven 
reception, we set RIE to one in the configuration code so the UART generates an interrupt request 
when it has received new data. This occurs when the receive data register is full (RDRF is one).
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For interrupt-​driven transmission, we will set TIE to one so the UART generates an interrupt 
request when it is ready to accept new data to transmit. This occurs when the transmit data regis-
ter is empty (TDRE is one). In fact, it will continue to generate interrupt requests until we write 
a new character to UARTx_​D to transmit. If we do not have any data to transmit yet, then we 
should not enable transmit interrupts. Instead, we will enable transmit interrupts later, when there 
is data to send.

void UART0_​IRQHandler(void) {
      uint8_​t ch;

      if (UART0-​>S1 & (UART_​S1_​OR_​MASK |UART_​S1_​NF_​MASK |
      UART_​S1_​FE_​MASK | UART_​S1_​PF_​MASK)) {
            //​ clear the error flags
            UART0-​>S1 |= UART0_​S1_​OR_​MASK | UART0_​S1_​NF_​MASK |
                UART0_​S1_​FE_​MASK | UART0_​S1_​PF_​MASK;
            //​ read the data register to clear RDRF
            ch = UART0-​>D;
      }
      if (UART0-​>S1 & UART0_​S1_​RDRF_​MASK) {
            //​ received a character
            ch = UART0-​>D;
      if (!Q_​Full(&RxQ)) {
            Q_​Enqueue(&RxQ, ch);
      } else {
              //​ error -​ queue full.
              //​ discard character
      }
      }
      if ( (UART0-​>C2 & UART0_​C2_​TIE_​MASK) && //​ transmitter interrupt enabled
      (UART0-​>S1 & UART0_​S1_​TDRE_​MASK) ) { //​ tx buffer empty
            //​ can send another character
            if (!Q_​Empty(&TxQ)) {
                  UART0-​>D = Q_​Dequeue(&TxQ);
      } else {
                  //​ queue is empty so disable transmitter interrupt
                  UART0-​>C2 &= ~UART0_​C2_​TIE_​MASK;
            }
      }
}

Listing 8.12 � Interrupt handler for UART0 handles transmit, receive, and error.

Listing 8.12 shows the ISR for UART0. The handler could be triggered by several types of 
events, so the ISR needs to identify the cause (or causes) of the interrupt and service each.

The ISR can be triggered by multiple possible errors. The code checks to see if any of the error 
flags are set. If so, the code resets all the error flags by writing a one to each. It also reads the UART 
data register to reset the RDRF flag. The program might also handle the error, for example, by 
incrementing a counter of UART communication errors.

For reception, the ISR is triggered when the receive data register is full (RDRF is one). The ISR 
checks to see if RDRF is set, in which case it is time to read the received character from UARTx_​D  
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and store it in the receive queue RxQ if there is space. If the queue is full, then the character is 
read from UARTx_​D and discarded. Reading from UARTx_​D resets RDRF.

For transmission, the ISR is triggered when the transmit data register is empty (TDRE is one). 
The ISR checks to see if TDRE is set, in which case it is time to load another character into the 
transmit data register. The ISR reads the new data from the transmit queue TxQ and writes it to 
UARTx_​D. Writing to UARTx_​D clears TDRE. If there is no new data to transmit, then the ISR 
needs to disable the transmitter interrupt so the UART ISR is not retriggered again until needed.

The communication activity of the completed system is shown in Figures 8.24 and 8.25. We 
see that there is a slight delay between the reception of the character and the transmission of the 
response.

Inter-​Integrated Circuit Bus (I2C)

Protocol Concepts

I2C is a synchronous protocol that uses a serial data (SDA) signal and serial clock (SCL) signal. 
I2C is a master/​slave protocol. The master initiates all communications, and slave devices transmit 
only when the master allows them to. A major feature of the protocol is device addressing: each 
message includes device addressing information, and each device on the bus has a unique address. 
Only the addressed device will respond to a message. This allows a system to be built that shares 
the SDA/​SCL bus as shown in Figure 8.26 without using additional control signals (such as slave 
selects for SPI).

Figure 8.25 � Logic analyzer shows delay between character reception, and the start of message 
transmission is about 60 µs.

Figure 8.24   �Logic analyzer displays received character “a” and resulting transmitted message “You 
pressed a”.
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The circuits driving the SDA and SCL signals are shown in Figure 8.27 and are designed so that 
multiple devices can drive the signal simultaneously without damage. Each device’s drive circuit 
consists of a transistor connected between the I2C bus signal (SDA or SCL) and ground. A sepa-
rate pull-​up resistor is connected between the signal and VDD. For the master to send a 0 on SDA, 
the transistor Q2 is turned on, pulling SDA to ground. To send a one, the transistor Q2 is turned 
off, allowing the resistor R1 to pull SDA up to VDD. If two devices attempt to transmit different 
data simultaneously, the SDA signal will be a zero.

I2C supports a range of communication speeds: 100 kbit/​s (standard), 400 kbit/​s (full speed), 
1 Mbit/​s (fast), 3.2 Mbit/​s (high speed). The maximum communication speed for a given system 
implementation is limited by how quickly the pull-​up resistor can pull SCL or SDA up to VCC. 
This depends on the capacitance of the SCL or SDA signal, which is affected by the number of 

SCL (serial clock)

Master Slave 2 Slave 3Slave 1

SDA (serial data)

Figure 8.26 � Overview of I2C system with master and three slave devices.
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Figure 8.27 � I2C signal drive circuits use “open drain” configuration to allow multiple devices to drive 
signals safely.
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devices and the bus length. The maximum speed for a given device will be listed in its data sheet 
or reference manual.

Message Format

There are several types of I2C message, with the basic format shown in Figure 8.28. Each message 
contains several fields:

•	 The start condition indicates the start of a message.
•	 The slave device address identifies the target of the communication.
•	 The read/​write bit indicates whether the following data is to be read from the slave or 

written to it.
•	 The acknowledgment bit has two uses: to indicate if the addressed slave is present, and whether 

more data will be read. These are explained later in this section.
•	 One or more data bytes. For some I2C slave devices, the first data byte will be interpreted as a 

register address.
•	 A stop condition indicates the end of a message.
•	 An optional repeated start condition is used in some types of messages.

Communication operations are structured as sequences of conditions (e.g. start, stop) and data 
transfers (one byte and one acknowledgment bit). We will see this in the code example mentioned.

Device Addressing
The master uses the device address to select a particular slave device on the bus. There are two 
addressing modes, one with 7-​bit addresses and another with 10-​bit addresses. For simplicity we 
will just discuss the 7-​bit mode.

The first byte in the message has two parts, as shown in Figure 8.28. The device address is held 
in the upper seven bits, and the R/​W bit is the LSB. This bit indicates whether the master will 
read from the slave (one) or write to it (zero). In practice, this byte is formed by shifting the slave 
address left by one bit and then adding the R/​W bit.

Figure 8.29 shows the operations involved for a master to write two data bytes to a slave device.

Slave Device Address  Data Byte

Start AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK Stop

Figure 8.28   �Basic fields of a simple I2C message with 7-​bit addressing and one data byte.

Master Start Slave Dev. Add. W(0) Data Data Stop

Slave ACK (0) ACK(0) ACK(0)

Figure 8.29   �Message format for master writing two bytes to slave device. Text indicates transmitting 
device. Blank indicates listening device.
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•	 The master first sends the start condition, the slave device address, and a write command (zero). 
If the addressed slave is present, it will assert the ACK bit. If the ACK bit is not asserted, then 
the master will terminate the message with a stop condition.

•	 The master sends the first byte of data.
•	 The slave sends an ACK to indicate it has been received.
•	 The master sends the second byte of data.
•	 The slave sends an ACK to indicate it has been received.
•	 The master sends the stop condition, indicating to all slaves that the message has completed.

Figure 8.30 shows how the master can read two bytes from the slave.

•	 The master first sends the start condition, the slave device address, and a read command (one). 
If the addressed slave is present, it will assert the ACK bit. If the ACK bit is not asserted, then 
the master will terminate the message with a stop condition.

•	 The master clocks the first byte of data out of the slave.
•	 The master sends an ACK to indicate it will read more data.
•	 The master clocks the second byte of data out of the slave.
•	 The master sends a NACK (one) to indicate that it does not want to read any more data in 

this message.
•	 The master sends the stop condition, indicating to all slaves that the message has completed.

Register Addressing
I2C also supports register addressing, in which each device is structured as a series of addressable 
registers that can be read or written. This standardizes information organization and simplifies sys-
tem development. The first data byte is interpreted by the slave device as a register address. Figures 
8.31 and 8.32 show examples of writing and reading to a register in a device.

Master Start Slave Dev. Add. R(1) ACK(0) NACK(1) Stop

Slave ACK(0) Data Data

Figure 8.30   �Message format for master reading two bytes from slave device.

Master Start Slave Dev. Add. W(0) Slave Reg. Add. Data Stop

Slave ACK(0) ACK(0) ACK(0)

Figure 8.31   �Message format for master writing one byte to a specific register in the slave device.

Master Start
Slave Dev. 

Add.
W(0)

Slave Reg. 
Add.

Start
Slave Dev. 

Add.
R(0) NACK(1) Stop

Slave ACK(0) ACK(0) ACK(0) Data

Figure 8.32   �Message format for master reading one byte from a specific register in the slave device.
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KL25Z I2C Peripherals

The KL25Z128 microcontroller has two I2C peripherals, called I2C0 and I2C1. Each I2Cx
 peripheral contains a baud rate generator, a shift-​register-​based transmitter/​receiver, bus interface 
circuitry, and extensive control logic. The hardware handles each message as a sequence of bytes. 
The software must also be structured accordingly, as we will see shortly.

General Control
Clock gating must be enabled for the appropriate I2Cx peripheral using the SIM register SIM_​
SCGC4.

The I2C control register one (I2Cx_​C1, shown in Figure 8.33) controls various aspects of the 
peripheral’s operation. The relevant fields for master mode are these:

•	 IICEN enables the peripheral to operate.
•	 IICIE enables interrupts from the peripheral.
•	 MST sets master or slave mode and also generates start and stop conditions on the bus. Changing 

MST from zero to one generates a start and selects master mode. Changing MST from one to 
zero generates a stop and selects slave mode.

•	 TX selects if the peripheral will transmit (one) or receive (zero).
•	 TXAK controls whether to transmit an ACK (zero) or a NACK (one) after a byte is received.
•	 Writing a one to RSTA makes the peripheral generate a repeated start condition on the bus.
•	 DMAEN enables DMA transfers.

Status and Interrupts
The I2C status register (I2Cx_​S, shown in Figure 8.34) indicates the status of the peripheral. The 
relevant fields for master mode are these:

•	 TCF indicates that a byte and acknowledgment bit transfer has completed.
•	 BUSY indicates the bus is busy.
•	 IICIF indicates that an interrupt is pending, for example, because a transfer has completed.
•	 RXAK indicates that an acknowledgment bit was received (one) after transmitting a byte. A 

zero indicates no acknowledgment was received.

7 6 5 4 3 2 1 0

IICEN IICIE MST TX TXAK RSTA WUEN DMAEN

Figure 8.33 � Contents of I2Cx_​C1 control register.

7 6 5 4 3 2 1 0

TCF IAAS BUSY ARBL RAM SRW IICIF RXAK

Figure 8.34 � Contents of I2Cx_​S status register.
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The I2C data register (I2Cx_​D) holds data to transmit or receive. When the master reads this 
register, the hardware starts to transmit or receive the next byte of data, depending on the value 
of the TX bit in I2Cx_​C1.

Baud Rate Generator
The communication speed (I2C baud rate) is set by the bus clock frequency and factors deter-
mined by the I2Cx_​F register, shown in Figure 8.35.

	 I2C baud rate
bus speed

mul SCL divider
=

×

The MULT field defines the value of mul, which can be 1, 2, or 4. The SCL divider value is deter-
mined indirectly by the ICR field. The ICR value indicates which value of SCL divider to use 
from a table of 64 alternatives (see “I2C divider and hold values” in the documentation [5]). For 
example, an ICR value of 32 (0x20) will result in an SCL divider of 160. ICR also defines hold 
times for various signals.

Other Features
The I2C peripheral has many other features not covered here: the ability to operate as a slave 
(with an address match comparison), DMA, general call messages, and system management bus 
(SMB) support. There is a low-​power mode that can operate while the rest of the MCU is in 
sleep mode.

Example: Communicating with the FRDM-​KL25Z’s Three-​Axis Inertial Sensor

The FRDM-​KL25Z board includes a three-​axis inertial sensor (MMA8451Q) that detects accel-
eration and gravity. The sensor is connected to the MCU’s I2C0 I2C bus, on pins PTE24 and 
PT25. The SCL and SDA signals are pulled up to 3.3 V with pull-​up resistors. The sensor also 
has two outputs that can trigger MCU interrupt requests, indicating to the MCU that a certain 
condition has occurred.

PTE24 and PTE25 are not connected to any expansion headers, making it difficult to connect 
the signals to a logic analyzer. However, we can add a header that taps into SCL and SDA at the 
lower end of the pull-​up resistors R16 and R18 (shown in Figure 8.36). We can now observe the 
bus activity on the logic analyzer.

Let’s see how to access the accelerometer through I2C using NXP’s polling-​driven starter code 
for the board [6]. For interrupt-​driven code, the MCU documentation provides an example flow-
chart for the ISR [5].

7 6 5 4 3 2 1 0

MULT ICR

Figure 8.35 � Contents of I2Cx_​F control register.
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void i2c_​init(void)
{
      //​clock i2c peripheral and port E
      SIM-​>SCGC4 |= SIM_​SCGC4_​I2C0_​MASK;
      SIM-​>SCGC5 |= SIM_​SCGC5_​PORTE_​MASK;

      //​set pins to I2C function
      PORTE-​>PCR[24] |= PORT_​PCR_​MUX(5);
      PORTE-​>PCR[25] |= PORT_​PCR_​MUX(5);

      //​ set to 400k baud
      //​ baud = bus freq/​(scl_​div+mul)
      //​ 24MHz/​400kHz = 60; icr=0x11 sets scl_​div to 56
      I2C0-​>F = I2C_​F_​ICR(0x11) | I2C_​F_​MULT(0);

      //​enable i2c and set to master mode
      I2C0-​>C1 |= (I2C_​C1_​IICEN_​MASK);

      //​select high drive mode
      I2C0-​>C2 |= (I2C_​C2_​HDRS_​MASK);
}

Listing 8.13 � Code to initialize I2C0 peripheral using pins PTE24 and PTE25.

The i2c_​init function shown in Listing 8.13 initializes the I2C0 peripheral.
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Figure 8.36   �Schematic diagram of inertial sensor on FRDM-​KL25Z development board. Image courtesy 
NXP Semiconductors.
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Building Blocks
Let’s look at how the I2C operations are implemented. The code uses the pieces in Listing 8.14 as 
building blocks to simplify code development.

•	 The first three macros (I2C_​M_​START, I2C_​M_​STOP, and I2C_​M_​RSTART) instruct the 
I2C0 peripheral to send start, stop, or repeated start conditions.

•	 The I2C_​TRAN and I2C_​REC macros set the peripheral to transmit or receive mode.
•	 The I2C_​WAIT macro contains a blocking loop that waits until the interrupt pending flag is 

set. This indicates that a byte and acknowledgment have transferred. The macro then clears 
the flag by writing a one to it.

•	 The NACK and ACK macros configure the peripheral to send either a NACK (no acknowl-
edgment) or an ACK.

      #define I2C_​M_​START 	 I2C0-​>C1 |= I2C_​C1_​MST_​MASK
      #define I2C_​M_​STOP  	 I2C0-​>C1 &= ~I2C_​C1_​MST_​MASK
      #define I2C_​M_​RSTART 	 I2C0-​>C1 |= I2C_​C1_​RSTA_​MASK

      #define I2C_​TRAN 	 I2C0-​>C1 |= I2C_​C1_​TX_​MASK
      #define I2C_​REC 	 I2C0-​>C1 &= ~I2C_​C1_​TX_​MASK

      #define I2C_​WAIT 	 while((I2C0-​>S & I2C_​S_​IICIF_​MASK)==0) {} \
                                      I2C0-​>S |= I2C_​S_​IICIF_​MASK;

      #define NACK 		  I2C0-​>C1 |= I2C_​C1_​TXAK_​MASK
      #define ACK 		  I2C0-​>C1 &= ~I2C_​C1_​TXAK_​MASK

Listing 8.14   �Macros used as building blocks in sample code for I2C communication.

Write Byte

      void i2c_​write_​byte(uint8_​t dev, uint8_​t reg, uint8_​t data)
      {
            I2C_​TRAN; 	 /​*set to transmit mode */​
            I2C_​M_​START; 	 /​*send start */​
            I2C0-​>D = dev; 	 /​*send dev address (write)*/​
            I2C_​WAIT 	 /​*wait for ack */​

            I2C0-​>D = reg; 	 /​*send register address */​
            I2C_​WAIT

            I2C0-​>D = data; 	 /​*send data */​
            I2C_​WAIT
            I2C_​M_​STOP;
      }

Listing 8.15   �Function to write a byte of data to I2C device register.



Embedded Systems Fundamentals with ARM Cortex-M based Microcontrollers: A Practical Approach244

244

Listing 8.15 shows the code to writing a byte to a specific device register. The function argu-
ments are device address (dev), the register address (reg), and the data. Figure 8.37 shows the 
corresponding bus activity.

The code switches the I2C0 peripheral to transmit mode and then sends a start symbol fol-
lowed by the device address with the write flag set. I2C_​WAIT causes the code to busy-​wait until 
the byte transfer has completed. The code sends the register address and awaits its completion. It 
then sends the data and awaits completion. Finally the code sends the stop condition to end the 
transaction.

int init_​mma()
{
      //​check for device
      if(i2c_​read_​byte(MMA_​ADDR, REG_​WHOAMI) == WHOAMI) {
   	    Delay(40);
   	    //​set active mode, 14 bit samples and 800 Hz ODR 
   	    i2c_​write_​byte(MMA_​ADDR, REG_​CTRL1, 0x01);
      	 return 1;
      } else {
   	    //​else error
   	    return 0;
      }
}

Listing 8.16 � Code to initialize MMA8451Q inertial sensor.

The init_​mma function in Listing 8.16 uses the i2c_​write_​byte function to configure the sensor 
to a sample rate of 800 Hz and a sample resolution of 14 bits. This is done by writing the appropri-
ate byte to control register one (0x2a).

Read Byte
Reading is more complex; it consists of writing the device and register addresses and then read-
ing the register value from the slave. Listing 8.17 shows the code to read one byte from a specific 
device register. The function arguments are the device address “dev” and the register address “reg”. 
Figure 8.38 shows the corresponding bus activity from the logic analyzer.

Start ACK ACK StopACKDev. Address Reg. Address Data

Figure 8.37 � Signals and sequence of operations to write a single byte.
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      uint8_​t i2c_​read_​byte(uint8_​t dev, uint8_​t reg)
      {
            uint8_​t data;

            I2C_​TRAN; 	 /​*set to transmit mode */​
            I2C_​M_​START; 	 /​*send start */​
            I2C0-​>D = dev; 	 /​*send dev address (write)*/​
            I2C_​WAIT 	 /​*wait for completion */​

            I2C0-​>D = reg; 	 /​*send register address */​
            I2C_​WAIT 	 /​*wait for completion */​

            I2C_​M_​RSTART; 	 /​*repeated start */​
            I2C0-​>D = (dev|0x1); 	 /​*send dev address (read) */​
            I2C_​WAIT 	 /​*wait for completion */​

            I2C_​REC; 	 /​*set to receive mode */​
            NACK; 	 /​*set NACK after read */​

            data = I2C0-​>D; 	 /​*dummy read */​
            I2C_​WAIT 	 /​*wait for completion */​

            I2C_​M_​STOP; 	 /​*send stop */​
            data = I2C0-​>D; 	 /​*read data */​

            return data;
      }

Listing 8.17 � Source code to read a single byte.

The code begins by switching the I2C0 peripheral to transmit mode and then sending a start 
symbol followed by the device address with the write command. Upon receiving the ACK, the 
code sends a repeated start condition followed by the device address with a read command. Upon 
receiving the ACK, the code switches the I2C peripheral to receive mode.

Start ACK ACK ACK NACK Stop
Repeated

Start
Dev.

Address
Reg.

Address Data
Dev.

Address

Figure 8.38 � Signals and sequence of operations to read a single byte.
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In order to indicate to the slave that only one byte of data will be read, the peripheral is 
configured to send a NACK after receiving the data. The code then performs a dummy read 
of the I2C data register to start the receive operation. I2C_​WAIT makes the code wait for the 
operation to complete, and at this point the hardware also sends NACK. The STOP condi-
tion is sent and the received data is read out of the data register to be returned to the calling 
function.

The init_​mma function in Listing 8.16 uses the i2c_​read_​byte function to verify that the 
sensor is present. The “Who am I” register (address 0x0d) will return a value of 0x1a when 
read.

Reading and Writing Multiple Bytes

Reading or writing multiple bytes is similar to reading a single byte. Listing 8.18 shows how the sample 
code reads the X, Y and Z accelerations from the sensor using the functions i2c_read_bytes (which is 
shown in Listing 8.19) and then formats the data bytes into the three acceleration vectors. Figure 8.39 
shows the corresponding bus activity. Writing multiple bytes is similar, but is not covered here.

void read_​full_​xyz()
{
   	    int i;
   	    uint8_​t data[6];
   	    int16_​t accel[3];

   	    i2c_​read_​bytes(MMA_​ADDR, REG_​XHI, data, 6);

   	    for( i=0; i<3; i++) {
   		     accel[i] = (int16_t) ((data[2*i]<<8) | data[2*i+1]);
   	    }
}

Listing 8.18 � Function read_​full_​xyz reads 6 bytes of data from sensor starting with register REG_​XHI.

Start ACK

NACK

Stop

Device
Address 

Register
Address 

Data
1

Repeated
Start

Device
Address 

Data
2

Data
3

Data
4

Data
5

Data
6

ACK

Figure 8.39 � Signals and sequence of operations to read multiple bytes.
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int i2c_read_bytes(uint8_t dev_adx, uint8_t reg_adx, uint8_t * data, int8_t 
data_count) {  

uint8_t dummy;   
int8_t num_bytes_read=0;    
I2C_TRAN;                            /* set to transmit mode */  
I2C_M_START;                         /* send start */  
I2C0->D = dev_adx;                   /* send dev address (write) */  
I2C_WAIT                             /* wait for completion */    
I2C0->D = reg_adx;                   /* send register address */  
I2C_WAIT                             /* wait for completion */   
I2C_M_RSTART;                        /* repeated start  */  
I2C0->D = dev_adx|0x01;              /* send dev address (read) */  
I2C_WAIT                             /* wait for completion */   
I2C_REC;                             /* set to receive mode */  
ACK;                                 /* tell HW to send ACK after read */  
dummy = I2C0->D;                     /* dummy read to start I2C read */  
I2C_WAIT                             /* wait for completion */
do {   

ACK;                             /* tell HW to send ACK after read */
data[num_bytes_read++] = I2C0->D;/* read data */   
I2C_WAIT                         /* wait for completion */  

} while (num_bytes_read < data_count-2);    

NACK;                                /* tell HW to send NACK after read */  
data[num_bytes_read++] = I2C0->D;    /* read data */  
I2C_WAIT                             /* wait for completion */  
I2C_M_STOP;                          /* send stop */
return 1; 

}

Listing 8.19 � Source code to read multiple bytes.

Listing 8.19 shows the i2c_read_bytes function. The code sends the device address and waits 
for the byte transfer completion. The code then sends the register address and waits until it is 
complete. The code then sends a repeated start condition followed by the device address (with the 
read command flag set). Upon completing the transmission, the code switches the I2C0 periph-
eral to receive mode. The code then performs a dummy read of the I2C data register to start the 
receive operation and waits until it completes. A loop reads each data byte except the last, using 
an ACK for each byte. The last data byte is read with a NACK to indicate no more data will be 
read. After the last read transfer operation completes the STOP condition is sent. 

Summary

In this chapter, we have seen the motivation for communicating information serially and the 
core issues that must be tackled to do so. We examined helpful development tools and software 
structures. We have studied three different types of communication protocols (asynchronous ser-
ial, synchronous serial, and I2C) and how to implement them using the peripherals of the MCU.



Embedded Systems Fundamentals with ARM Cortex-M based Microcontrollers: A Practical Approach248

248

Exercises

1.	 Examine Chapter 10 (Signal Multiplexing and Signal Descriptions) of the KL25 Sub-​Family 
Reference Manual to determine the answers to the following questions. Assume that an MCU 
in an 80 QFP package is used.
a.	 Which port bits can be used for SPI0?
b.	 Which port bits can be used for SPI1?

2.	 Show the register settings needed to configure SPI0 to operate as a master at 12 MHz, 8 data 
bits (MSB first), SPI mode zero (Clock Phase CPHA = 0, Clock Polarity CPOL = 0). Assume 
the bus clock is 24 MHz. Enable interrupts for transmission, reception, and errors. Use the /​
SS pin as a slave select output.

3.	 Draw a timing diagram showing the bytes 0x31 0xF1 being transmitted by SPI at 1,000,000 
baud, with SPI mode zero. Indicate the time of each signal transition.

4.	 Examine Chapter 10 (Signal Multiplexing and Signal Descriptions) of the KL25 Sub-​Family 
Reference Manual to determine the answers to the following questions. Assume that an MCU 
in an 80 QFP package is used.
a.	 Which port bits can be used for UART0?
b.	 Which port bits can be used for UART1?
c.	 Which port bits can be used for UART2?

5.	 Show the register settings needed to configure UART1 to transmit and receive at 71,433 
baud, eight data bits (LSB first), one stop bit and odd parity. Assume the bus clock is 24 MHz. 
Enable interrupts to indicate that the transmit data register is empty, the receive data register 
is full, or any error has occurred. The UART should not trigger any DMA activity.

6.	 Assume a UART has both TIE and TCIE set to one and a program writes a byte to the UART 
D register for transmission. Which interrupts will occur, and when?

7.	 Draw a timing diagram showing the bytes 0x31 0xF1 being transmitted by a UART at 115,200 
baud, with LSB first, odd parity, and one stop bit. Indicate the time of each signal transition.

8.	 Examine Chapter 10 (Signal Multiplexing and Signal Descriptions) of the KL25 Sub-​Family 
Reference Manual to determine the answers to the following questions. Assume that an MCU 
in an 80 QFP package is used.
a.	 Which port bits can be used for I2C0?
b.	 Which port bits can be used for I2C1?

9.	 Show the register settings needed to configure I2C1 to communicate at approximately 800 
kbaud. Assume the bus clock is 24 MHz. What is the actual communication frequency?

10.	 Draw a timing diagram of the following I2C message: a value of 0x31 being written to device 
0x36 register 0x55. Assume 200 kbaud communications speed. Indicate the time of each sig-
nal transition.
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Overview

This chapter presents the direct memory access (DMA) controller, a peripheral that is able to 
take control of the MCU’s address and data bus in order to transfer data directly with read and 
write hardware operations, rather than relying on explicit load and store instructions in a program.  
Peripheral events (e.g. timer overflows) that can trigger interrupt requests can also be used to 
trigger DMA transfers. The DMA controller can eliminate simple ISRs, reducing the amount of 
software that the MCU must execute, which improves performance and responsiveness. In this 
chapter we see how to use DMA to copy memory data quickly, and also how to generate an analog 
waveform from data stored in memory using the DAC and a timer.

direct memory access (DMA)
Type of memory access performed by peripheral hardware without using program instructions

Concepts

A basic DMA transfer occurs as follows:

•	 A trigger event starts the transfer. This may be an explicit software write to a start field in a 
control register of the DMA controller, or an event such as a timer overflow or an ADC conver-
sion completion.

Direct Memory Access
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•	 The DMA controller takes control of the MCU’s address and data buses and control lines in 
order to read a data item from the source location (which is specified in the source address reg-
ister). This source may be memory or a memory-​mapped peripheral.

•	 The DMA controller then uses the address and data buses and control lines in order to write 
the data to the destination location (which is specified in the destination address register). The 
DMA controller releases the buses and control lines for the CPU to use.

•	 The DMA controller increments the source and destination address registers so the next items 
are addressed for the next transfer.

•	 The DMA controller updates a count register that tracks the number of items transferred. If 
there are more items to transfer, this process repeats.

•	 The DMA controller will indicate the final transfer has completed by setting a status flag and 
triggering an interrupt (if enabled).

There are two important variations of this basic transfer process:

•	 The source and destination address registers are usually incremented after each transfer to 
address the next locations. However, in some cases we wish to have the DMA controller to 
copy the same value into every destination, or read successive values from the same source. 
To enable this, each address register can be configured to advance or remain unchanged.

•	 DMA controllers typically offer two transfer modes. In the continuous (burst) mode, the DMA 
controller takes over the bus when it is triggered, transferring data nonstop until the transfer is 
complete. In the cycle-​stealing (time-​sharing) mode, the DMA controller shares the bus with 
the MCU, taking control once per trigger, transferring one item, and then yielding the bus. The 
system designer can select the appropriate mode for the application.

One obvious use for DMA is to transfer or fill a block of memory quickly. For example, this could 
be useful for erasing a buffer, initializing a data structure, or copying an image into a frame buffer. 
However, there are more sophisticated uses possible when combined with other peripherals. For 
example, DMA can be used to transfer a data value from a waveform buffer to the DAC in order 
to generate an analog waveform. Each transfer is controlled by a timer overflow, allowing precise 
timing with minimal CPU overhead. We will implement this example later in this chapter.

Using DMA transfers can also help reduce the energy or power used by the system. Because DMA 
transfers reduce the processing required of the CPU, it may be possible to place the CPU in a low-​power 
sleep mode. Required peripherals will remain active, whereas the rest of the MCU will be disabled or 
powered down, reducing both the power and energy consumption of the system. Another option is 
to keep the CPU active but running at a lower clock frequency, which reduces power consumption.

KL25Z DMA Controller and Multiplexer Peripherals

As shown in Figure 9.1, the KL25Z MCU has a DMA controller peripheral that is connected to 
both the high-​speed system bus and the low-​speed peripheral bus.1 The controller has four identi-
cal channels, numbered 0 through 3.

	1	 The high-​speed system bus uses a crossbar switch that allows simultaneous operation of multiple masters (Cortex-​M0+ core, DMA 
controller, and USB peripheral) when accessing slaves (Flash memory controller, SRAM, and peripheral bridge).
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Figure 9.1   �DMA controller can seize system or peripheral bus to transfer data between  
devices. Devices with bold outlines (core, DMA, bridge) can be bus masters.  
The high-​speed system bus uses a crossbar switch to support simultaneous accesses.

Figure 9.2 shows the structure of a single DMA channel. DMA transfers can be started by a soft-
ware write operation or a hardware trigger event. If the hardware trigger is used, the DMA_​MUX 
multiplexer for that channel (on the left) selects one of many possible trigger event requests from 
the other peripherals and provides it to the DMA controller for that channel with the ERQ signal. 
The controller reads the data specified by the source address register (SAR). That data may need 
to be buffered and reformatted if source and destination are of different sizes, or if either is una-
ligned. The controller writes the data to the location indicated by the destination address register 
(DAR). DCR, BCR, and DSR are control or status registers that are discussed in further sections.

DMA Multiplexer and Trigger Sources

The DMA_​MUX multiplexer specifies which hardware source will trigger the DMA channel. 
This subsystem is described in the direct memory access multiplexer chapter and chip configura-
tion chapters of the MCU reference manual [1].

The DMAMUXx_​CHCFGn control register (Figure 9.3) allows the selection of the hardware 
event that will trigger a DMA channel’s transfer.

•	 The ENBL field enables the DMA channel when set to one.
•	 The TRIG field enables triggering of the DMA channel when set to one.
•	 The SOURCE field selects one of the trigger sources, as summarized in Table 9.1.
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Figure 9.2   �Events from other peripherals can trigger DMA controller channel to seize system or 
peripheral bus to transfer data.
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Figure 9.3 � DMAMUXx_​CHCFGn control register selects trigger source for DMA channel.

Table 9.1 Trigger Sources for DMA Transfers

Source # Module Description

0 –​ Disabled

2–​7 UART0,1, 2 Receive, transmit

16–​19 SPI0, 1 Receive, transmit

22–​23 I2C0, 1

24–​29 TPM0 Channels 0–​5

32–​35 TPM1-​2 Channels 0–​1

40 ADC0

42 CMP0

45 DAC0

49–​53 Port control module Port A-​E

54–​56 TPM0-​2 Overflow

57 TSI

60–​63 DMAMUX Always enabled
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DMA Controller

The DMA controller is described in the DMA controller module of the MCU reference manual 
[1]. Each channel n has several control registers, as shown in Figure 9.2. The source address reg-
ister DMA_​SARn holds the first address to read from. The destination address register DMA_​
DARn holds the first address to write to.

The DMA_​DCRn register, shown in Figure 9.4, configures the operation of the channel.
The DMA_​DSR_​BCRn register, shown in Figure 9.5, holds status flags and the byte count 

register.

Let us examine the fields that define the basic aspects of the transfer.

•	 BCR defines the number of bytes to transfer (from 0 to 0x000f ffff). After each DMA trans-
fer, the hardware decrements BCR by the number of bytes transferred.

•	 SSIZE and DSIZE specify the data sizes of the source and destination: 32 bits (00), 16 bits (10), 
or 8 bits (01). The source and destination sizes do not need to match, as the DMA controller 
will perform extra reads or writes as needed.

•	 SINC and DINC, when set to one, specify to increment the SAR or DAR by the data size after 
each transfer. A value of zero will result in no incrementing for that address register.

•	 SMOD and DMOD (when nonzero) define the address modulus in order to provide circular 
buffers. This feature modifies the address increment operation so that at the end of the buffer it 
automatically wraps back to the beginning. An SMOD or DMOD value of n specifies a buffer 
size of 2n+3 bytes, or 16 bytes to 64 kilobytes.

•	 CS controls whether the DMA controller performs cycle-​stealing, in which it performs 
only one transfer per request, or if it makes continuous transfers until all bytes have been 
transferred.

•	 Setting AA causes the hardware to automatically align the addresses with the bus size, improv-
ing performance when transferring large amounts of data with continuous transfers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EINT ERQ CS AA 0 Res. EADRQ SINC SSIZE DINC DSIZE START

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SMOD DMOD D_REQ 0 LINKCC LCH1 LCH2

Figure 9.4 � DMA_​DCRn register defines DMA operation.

31 30 29 28 27 26 25 24 23 20 19 0

0 CE BES BED 0 REQ BSY DONE 0 BCR

Figure 9.5 � DMA_​DSR_​BCRn register holds status flags and the byte count register.
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Certain fields are related to how a transfer is started:

•	 Setting ERQ to one enables a peripheral request to start a transfer. This is used for a hard-
ware-​triggered transfer.

•	 Writing a one to START will start a transfer. This is used for a software-​triggered transfer.

Certain fields indicate error conditions:

•	 CE indicates a configuration error has occurred.
•	 BES indicates a bus error when reading the source.
•	 BED indicates a bus error when writing the destination.

These fields indicate the progress of the transfer:

•	 The REQ status flag is one when a transfer has been requested but not started.
•	 The BSY status flag is one from the time the channel starts a transfer until the time when it 

completes.
•	 The DONE status flag is one when the channel has completed all of its transfers. If the DMA 

channel triggered an interrupt, this flag needs to be cleared in the ISR by writing a one to it, 
which will also clear all the status bits.

Completing a transfer can trigger an interrupt.

•	 EINT enables the DMA interrupt when the transfer has completed.

Channels can be linked to trigger each other. For example, channel 0 can trigger channel 1 after 
each cycle-​stealing transfer. Channel 1 could trigger channel 2 after channel 1’s byte count regis-
ter reaches zero.

•	 LINKCC specifies how to link channels together.
•	 LCH1 and LCH2 specify the other channels for this channel to trigger.

Basic DMA Configuration and Use

The following steps are used to configure and use the DMA controller and multiplexer:

•	 Enable clock gating to the DMA module in SIM register SCGC7.
•	 If hardware triggering is used, enable clock gating to the DMAMUX modules in SIM 

register SCGC6.
•	 If hardware triggering is used, disable the DMA channel by clearing the channel’s CHCFG field 

in DMAMUX0 to zero.
•	 Initialize the DMA control registers for channel n.
•	 Load SARn and DARn with the source and destination addresses.
•	 Load BCRn with the number of bytes to transfer.
•	 Clear the DONE flag in DSRn to clear the controller.
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•	 If hardware triggering is used:
o  Enable the DMA channel by writing the trigger source number to the channel’s CHCFG 

field in DMAMUX0.
o  Enable peripheral triggers by setting the ERQ flag to one.

•	 If interrupts are used, set the EINT flag to one.

Next, the transfer will be triggered. To trigger the transfer with software, set the START flag in DCRn.
Finally, await the end of the transfer. For polling, wait until the DONE flag in DSRn changes to 

one. For interrupts, the DMAn_​IRQHandler will run after the transfer completes.

Examples

Let’s examine two different ways to use the DMA controller: copying data and generating an 
analog waveform.

Bulk Data Transfer

How quickly can the processor copy a block of data in memory? Let us start with a simple software 
solution. Listing 9.1 shows the C source code to copy ARR_​SIZE words from source array s to 
destination array d.
#define ARR_​SIZE (256)
uint32_​t s[ARR_​SIZE], d[ARR_​SIZE];

void Test_​SW_​Copy(void) {
       uint32_​t * ps, * pd;

       ps = s;
       pd = d;
       for (i=0; i<ARR_​SIZE; i++) {
              *pd++ = *ps++;
       }
}

Listing 9.1  C code to copy data from source array s to destination array d.

000000 4a2a             LDR       r2,|L1.172|
000002 482b             LDR       r0,|L1.176|
;;;20       for (i=0; i<ARR_​SIZE; i++) {
000004 2100             MOVS      r1,#0
                |L1.6|
;;;21             *pd++ = *ps++;
000006 ca08             LDM       r2!,{r3}
000008 1c49             ADDS      r1,r1,#1
00000a c008             STM       r0!,{r3}
00000c 29ff             CMP       r1,#0xff
00000e d9fa             BLS       |L1.6|
;;;22      }

Listing 9.2  Assembly code generated by compiler for code to copy data.
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Compiling this code with optimization enabled generates the assembly code in Listing 9.2. 
The loop consists of five instructions (LDM at address 000006 through BLS at address 00000e). 
Let us assume each instruction will take one clock cycle to execute, so the loop should take five 
clock cycles per iteration. The time needed for 256 iterations of five clock cycles each at 48 MHz 
is 26.7 µs.

We run the code on the MCU and measure the timing, finding that it takes 44 µs to copy 256 
words. This translates to a transfer rate of six million words/​second, or eight clock cycles per loop 
iteration.

Why does the loop take eight cycles instead of five? The CPU’s technical reference manual 
details the number of cycles needed to execute each type of instruction [2]. Most instructions take 
only one cycle, but some take more. LDM and STM each take two cycles (and would take more if 
they had more registers to load or store). BLS take two cycles each time the branch is taken back 
to |L1.6|, but only one cycle when it is not taken.

Let’s use the DMA controller to get rid of this loop and its instruction overhead. We will use 
channel 0 of the DMA controller to perform bulk transfers of words using software triggering 
and polling for completion detection. The function Init_​DMA_​To_​Copy in Listing 9.3 performs 
generic initialization for any copy. It first enables the clock for the DMA module, and then config-
ures DCR0 to increment both the source and destination pointers and to transfer 32 bits at a time.

The function Copy_​Longwords then configures the DMA controller for the specific transfer, based on 
the parameters (source pointer, destination pointer, and word transfer count). The code stores the source 
and destination pointers in the source and destination address registers. The code multiplies the word 
“transfer count” by four to indicate the number of bytes to transfer and stores it in the byte count register. 
Next the code clears the DONE flag and starts the transfer by setting the START flag. Finally the code sits 
in a polling loop to busy-​wait until the DONE flag is set by the DMA controller, indicating the transfer has  
completed.
#define ARR_​SIZE (256)
uint32_​t s[ARR_​SIZE], d[ARR_​SIZE];
void Init_​DMA_​To_​Copy(void) {
   SIM-​>SCGC7 |= SIM_​SCGC7_​DMA_​MASK;
   �DMA0-​>DMA[0].DCR = DMA_​DCR_​SINC_​MASK | DMA_​DCR_​SSIZE(0) | DMA_​DCR_​DINC_​MASK | 

DMA_​DCR_​DSIZE(0);
}
void Copy_​Longwords(uint32_​t * source, uint32_​t * dest, uint32_​t count) {
   //​ initialize source and destination pointers
   DMA0-​>DMA[0].SAR = DMA_​SAR_​SAR((uint32_​t) source);
   DMA0-​>DMA[0].DAR = DMA_​DAR_​DAR((uint32_​t) dest);
   //​ byte count
   DMA0-​>DMA[0].DSR_​BCR = DMA_​DSR_​BCR_​BCR(count*4);
   //​ verify done flag is cleared
   DMA0-​>DMA[0].DSR_​BCR &= ~DMA_​DSR_​BCR_​DONE_​MASK;
   //​ start transfer
   DMA0-​>DMA[0].DCR |= DMA_​DCR_​START_​MASK;
   //​ wait until it is done
   while (!(DMA0-​>DMA[0].DSR_​BCR & DMA_​DSR_​BCR_​DONE_​MASK))
   ;
}
void Test_​DMA_​Copy(void) {
   uint16_​t i;
   Init_​DMA_​To_​Copy();
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   for (i=0; i<ARR_​SIZE; i++) {
          s[i] = i;
          d[i] = 0;
   }
   Copy_​Longwords(s, d, ARR_​SIZE);
}

Listing 9.3  Code to use DMA controller to copy 32-​bit words quickly.

The driver function is called Test_​DMA_​Copy. It initializes the DMA controller, the source 
data (with incrementing integers), and the destination data (with zeros). The function then calls 
Copy_​Longwords. Running this code and measuring the timing in Copy_​Longwords (using an 
oscilloscope and a debug twiddle bit) reveals that it takes about 10.8 µs for the DMA controller to 
transfer 256 words. This means the transfer rate is nearly 24 million words per second (96 mega-
bytes/​second), which is the full speed of the bus.

Compare this with the software solution, which manages only 6 million words per second due 
to the overhead of executing instructions (to load and store values, increment source and destina-
tion pointers, increment the counter, and conditionally branch to repeat the loop).

Analog Waveform Generation

The second example targets the running example of the analog waveform generator introduced in 
Chapter 6 that uses the digital-​to-​analog converter (DAC). In Chapter 7 we saw how to use the 
timer to generate a regular interrupt. The timer ISR updates the DAC in order to generate the 
waveform. Using an ISR provides precise timing while separating the waveform generator code 
from the rest of the program.

In this chapter we will remove the timer ISR and use channel 0 of the DMA controller to peri-
odically transfer a data item from a memory buffer to the DAC. Note that the DMA controller 
can copy data but cannot generate it. We therefore will precompute the waveform samples and 
store them in an array from which the DMA controller will read.

Using DMA will reduce CPU loading by eliminating the timer ISR. Using the DMA to trans-
fer data will also improve the timing stability even further, as the transfers will not be delayed by 
other ISRs (which might happen with the timer ISR approach).

Design
Figure 9.6 shows the sequence of events in waveform generation. The timer peripheral in the first 
column (TPM) generates a periodic event to trigger a DMA transfer, rather than an ISR as used in 
Chapter 7. The DMA controller is configured to transfer one sample (16 bits) per timer overflow 
event. The DMA controller will generate an interrupt after performing the last transfer to the 
DAC. The DMA ISR will update the DMA controller for the next set of transfers.

The top-​level code (in Listing 9.4) initializes the LEDs, the DAC, the sample array 
(TriangleTable), the DMA system, and the timer TPM. It then starts the TPM and DMA system. 
At this point all waveform generation work is performed by the DMA system and its ISR, so the 
function can return, do other work, or even enter an infinite loop (as shown here).

Listing 9.5 shows the data sample array called TriangleTable, and its initialization function 
Init_​TriangleTable. This function takes advantage of the symmetry of the triangle wave to load up 
the array from both the front and back in each loop iteration.
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void Play_​Tone_​with_​DMA(void) {
       Init_​RGB_​LEDs();
       Control_​RGB_​LEDs(0,0,0);
       Init_​DAC();
       Init_​TriangleTable();
       Init_​DMA_​For_​Playback(TriangleTable, NUM_​STEPS);
       Init_​TPM(10);
       Start_​TPM();
       Start_​DMA_​Playback();
       while (1)
              ;
}

Listing 9.4  Top-​level code for generating analog waveform.

#define MAX_​DAC_​CODE (4095)
#define NUM_​STEPS (512)

uint16_​t TriangleTable[NUM_​STEPS];

void Init_​TriangleTable(void) {
      unsigned n, sample;

      for (n=0; n<NUM_​STEPS/​2; n++) {
             sample = (n*(MAX_​DAC_​CODE+1)/​(NUM_​STEPS/​2));
             TriangleTable[n] = sample; //​ Fill in from front 
             TriangleTable[NUM_​STEPS-​1-​n] = sample; //​ Fill in from back
      }
}

Listing 9.5  Code to initialize data buffer TriangleTable with waveform samples.

Overflow

Overflow

Overflow

Overflow

Transfer next sample

Transfer next sample

Transfer next sample, DMA IRQ

Transfer next sample

Update DMA if needed

:TPM HW :DMA HW :DAC HW :DMA_IRQHandler

Figure 9.6 � Sequence of events that generate analog waveform using timer, DMA, and DAC. Diagram shows 
DMA IRQ occurring after 4 transfers for readability, but in code IRQ occurs after 512 transfers.
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void Init_​DMA_​For_​Playback(uint16_​t * source, uint32_​t count) {
      //​ Save reload information
      Reload_​DMA_​Source = source;
      Reload_​DMA_​Byte_​Count = count*2;

      //​ Gate clocks to DMA and DMAMUX
      SIM-​>SCGC7 |= SIM_​SCGC7_​DMA_​MASK;
      SIM-​>SCGC6 |= SIM_​SCGC6_​DMAMUX_​MASK;

      //​ Disable DMA channel to allow configuration
      DMAMUX0-​>CHCFG[0] = 0;

      //​ Generate DMA interrupt when done
      //​ Increment source, transfer words (16 bits)
      //​ Enable peripheral request
      DMA0-​>DMA[0].DCR = DMA_​DCR_​EINT_​MASK | DMA_​DCR_​SINC_​MASK |
      DMA_​DCR_​SSIZE(2) | DMA_​DCR_​DSIZE(2) | DMA_​DCR_​ERQ_​MASK | DMA_​DCR_​CS_​MASK;

      //​ Configure NVIC for DMA ISR
      NVIC_​SetPriority(DMA0_​IRQn, 2);
      NVIC_​ClearPendingIRQ(DMA0_​IRQn);
      NVIC_​EnableIRQ(DMA0_​IRQn);

      //​ Set DMA MUX channel to use TPM0 overflow as trigger
      DMAMUX0-​>CHCFG[0] = DMAMUX_​CHCFG_​SOURCE(54);
}

Listing 9.6  Code to initialize DMA system for playing back waveform.

Listing 9.6 shows the code to initialize the DMA controller for waveform playback. The func-
tion is passed a pointer to the beginning of the source data (TriangleTable in this example) and 
the number of samples to transfer. These parameters will be needed each time DMA playback 
is started, so they are stored in variables Reload_​DMA_​Source and Reload_​DMA_​Byte_​Count 
(after multiplication by two to reflect the two bytes per data sample).

The function next enables the clock gating for the DMA and DMAMUX modules, then disables 
the DMA channel (0) to allow configuration. The channel is configured to transfer 16-​bit words, 
increment the source address but not the destination address, perform one transfer (cycle stealing 
mode) when a peripheral request is received, and generate a DMA interrupt when done with all 
transfers. The NVIC is configured to accept DMA interrupt requests, and finally the peripheral 
request trigger for DMA channel 0 is connected to the TPM0 overflow signal (specified by code 54).
void Start_​DMA_​Playback() {
      //​ initialize source and destination pointers
      DMA0-​>DMA[0].SAR = DMA_​SAR_​SAR((uint32_​t) Reload_​DMA_​Source);
      DMA0-​>DMA[0].DAR = DMA_​DAR_​DAR((uint32_​t) (&(DAC0-​>DAT[0])));
      //​ byte count
      DMA0-​>DMA[0].DSR_​BCR = DMA_​DSR_​BCR_​BCR(Reload_​DMA_​Byte_​Count);
      //​ clear done flag 
      DMA0-​>DMA[0].DSR_​BCR &= ~DMA_​DSR_​BCR_​DONE_​MASK;
      //​ set enable flag
      DMAMUX0-​>CHCFG[0] |= DMAMUX_​CHCFG_​ENBL_​MASK;
}

Listing 9.7  Code to start or restart DMA playback of specific data buffer to DAC.
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Listing 9.7 shows the code to start the waveform playback using DMA. The source address 
register is loaded with the address of the data buffer, and the destination address is loaded with 
the address of the DAC0 data register. The byte count register is loaded with the number of bytes 
to transfer. The Done flag is cleared to clear flags, and then the channel is enabled by setting the 
enable flag.

void DMA0_​IRQHandler(void) {
   //​ Turn off blue LED in DMA IRQ handler
   Control_​RGB_​LEDs(0,0,0);
   //​ Clear done flag 
   DMA0-​>DMA[0].DSR_​BCR |= DMA_​DSR_​BCR_​DONE_​MASK;
   //​ Start the next DMA playback cycle
   Start_​DMA_​Playback();
   //​ Turn on blue LED
   Control_​RGB_​LEDs(0,0,1);
}

Listing 9.8  Interrupt service routine for DMA0 sets up DMA system to play back buffer again.

Listing 9.8 shows the interrupt service routine that executes after the DMA controller 
completes its transfer of all data. The first step is optional—​changing the blue LED so we 
can see when the ISR runs by using an oscilloscope or logic analyzer. Next, the code clears 
the DMA peripheral’s done flag to tell the peripheral the interrupt is being serviced. Then 
the code calls Start_​DMA_​Playback to set up the DMA controller to transfer the contents 
of the data buffer again. The last step is optional, turning off the blue LED to indicate the 
ISR has completed.

Analysis
Let’s verify the code and peripherals generate the waveform correctly. Figure 9.7 shows the analog 
waveform output (upper trace) and the DMA ISR activity (lower trace). The DMA ISR runs once 
every 512 samples (NUM_​STEPS) to set up the DMA to play the buffer again, resulting in an ISR 
frequency of 194 Hz.

In Figure 9.8 we zoom in and see the ISR is active for about 2.8 µs. There is a minor over-
head to enter and exit the ISR, adding roughly 20 cycles, or about 0.4 µs at 48 MHz. We can 
determine how much of the CPU’s time is left for other processing. The total CPU load from 
the DMA ISR is (2.8 µs + 0.4 µs) × 194 Hz = 0.000621, or 0.00621%. In addition, the DMA 
controller takes over the bus to transfer each sample, preventing the CPU from using the bus. 
Each transfer takes two cycles every 10 µs, so the fraction of time that DMA uses the bus is  
2/​(48 MHz × 10 µs) = 0.004167, or 0.4167%. Adding these two values together shows that this 
waveform generator takes only 0.4787% of the CPU’s time, leaving over 99.5% available for 
other processing.

Compare this with the approach from Chapter 7 based on the timer ISR. The timer ISR is 
active for about 1 µs and runs every 10 µs (100 kHz frequency). The total CPU load including 
interrupt overhead is (1 µs + 0.4 µs) × 100 kHz = 0.14 = 14%. Using the DMA system has reduced 
overhead by a factor of about 30.
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Figure 9.8 � DMA ISR is active for about 2.8 µs.

Figure 9.7 � Analog output signal (above) and DMA ISR activity (below) show correct waveform 
generation.
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Summary

The DMA system can transfer information among peripherals and memory quickly. In many cases 
this can eliminate the need to use software on the CPU, improving system responsiveness, pre-
dictability, and throughput while freeing up time for the CPU either to use on other activities or 
to save power by sleeping.

Exercises

1.	 Determine and present the register configuration needed so that the next 1024 bytes of 
data received on UART1 are saved by the DMA controller in memory starting at address 
DestAddress. When the transfer is complete, the DMA controller must generate an interrupt.

2.	 Consider the memory transfer example. Rewrite the code to copy the contents of array s–​d 
without using pointers and measure its timing. How long does it take per array element, and 
how does this compare with the transfer using DMA? Enable maximum optimization for speed 
in the compiler, rebuild the code, and repeat the measurement. Are the results different, and 
if so, how do they compare with the transfer using DMA?

3.	 Determine and present the DMA and DMAMUX control register configuration needed so 
that the next 15000 ADC results are sent out through SPI channel 1 using DMA channel 
3. Assume the ADC has been configured to perform 8-​bit conversions and generate an inter-
rupt upon completion.

4.	 We wish to increase the sampling rate for the analog waveform generator in this chapter. What 
is the maximum sampling rate possible that leaves 50% of the CPU’s time for other processing?

5.	 How quickly can the DMA controller copy 8192 bytes of data from Port A (bits 0–​7) to RAM? 
Explain the timing.
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Overview

This appendix describes how to measure and reduce power and energy consumption on the 
FRDM-​KL25Z evaluation board.

FRDM-​KL25Z Power System Architecture

The power system architecture for the FRDM-​KL25Z development board is shown in Figure A.1. 
For full details, refer to the reference manual and schematic diagram [1] [2].

Most of the circuitry on the board runs at 3.3 V. There are four power inputs available, one 
linear 3.3 V voltage regulator, and three separate output power domains. Each output domain runs 
at the same nominal 3.3 V, and may be disconnected or measured separately. J3, J4, and J20 are 
headers for connecting jumpers to short out the parallel component(s).

Figure A.2 is an excerpt from the schematic diagram showing the circuit that implements the 
power system [2]. Note that the components marked DNP (do not populate) are optional and 
not present on the PCB. Also, certain resistors (R73, R74) are used as small, low-​cost, removable 
jumpers. These resistors have a value of 0 Ω and simply short their two terminals together.

Power Inputs

There are four power inputs available:

•	 The two USB connectors (J5 and J7) can each supply 5V to power the board if connected to a 
USB port. J5 is connected to P5V_​KL25Z and J7 is connected to P5V_​SDA.

•	 The P5-​9V_​VIN input is located on the expansion header (J9, pin 16), allowing an expansion 
shield to supply power to the FRDM-​KL25Z.

•	 The fourth power input is an optional coin cell BT1 that is connected to signal P3V3_​BATT. 
To use a battery, first add the battery holder and diode D7 to the PCB and then insert the 
battery.

P5V_SDA

P5-9_VIN

P5V_KL25Z

Linear 3.3V 
Regulator

Coin Cell

P3V3 
Domain

Inertial 
Sensor

RGB 
LEDs

P3V3_SDA 
Domain

P3V3_KL25Z 
Domain

KL25Z 
MCU

K20 
MCU

J20

J4 R73 R81 J3 R74

Figure A.1  FRDM-​KL25Z power system architecture.
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Voltage Regulation

The first three power inputs are combined with diodes to create the signal P5-​9V_​VIN_​VR. This 
then powers the linear voltage regulator U1 (NCP1117), which creates a stable 3.3V [3]. The 
P3V3_​BATT input is not regulated.

There are two important power-​related issues for the NCP1117 to consider. First, the NCP1117 
has a dropout voltage of slightly under 1 V, so the input voltage must be at least 4.3 V. Second, 
the NCP1117 draws a large quiescent current (roughly 8 mA) in addition to any current drawn 
by from its output. For low-​power applications this current may be many times larger than the 
average current drawn by the MCU and the rest of the circuit. Instructions on disconnecting the 
regulator are given later in this Appendix.

Power Domains

There are three output power domains:

•	 The P3V3_​KL25Z domain powers the KL25Z MCU (U3).
•	 The P3V3_​SDA domain powers the OpenSDA debug MCU (U6) and interface circuit (U4).
•	 The P3V3 domain powers the RGB LED (D3), the inertial sensor (U7), and the two domains 

above (P3V3_​KL25Z and P3V3_​SDA).

Current Measurement and Power Calculation

Measuring the entire board’s current is a useful starting point. The entire FRDM-​KL25Z board’s 
current draw can be measured by powering it with a modified USB cable as shown in Figure A.3. 
Cut the red wire within the cable (the 5V supply line), strip the insulation off each end, and con-
nect a multimeter in ammeter mode. The power consumed is the product of the current and the 
voltage. Be sure also to measure the USB supply voltage with a voltmeter, as it can vary between 
4.8 and 5.1 V.
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Figure A.2  Power supply portion of FRDM-​KL25Z schematic [2].
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multimeter
Multi-function test equipment which can measure electrical values such as voltage, current, and resistance

ammeter
Test device which can measure current value through circuit. Multimeters typically have ammeter modes available.

power (P)
Rate at which a device uses energy. Measured in Watts (W). Symbol is P.

voltmeter
Test device which can measure voltage value across circuit. Multimeters typically have voltmeter modes available.

More precise current measurements require circuit modifications to isolate portions of 
the circuit; these are described in later sections. Please refer to the section titled “Circuit 
Modification Summary” for a summary of the modifications and the component locations on 
the PCB.

Finally, remember that when calculating power you must multiply the current by the circuit’s 
operating voltage, which may be 5 V, 3.3 V, or something else. Measure when you are in doubt.

Figure A.3  Modified USB cable allows measurement of entire board’s current draw.
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Measuring Target MCU Current

To isolate the target MCU’s current, remove resistor R73 (0 Ω). The MCU’s current will flow 
through a 10 ohm resistor (R81), producing a voltage drop of 10 mV drop for every 1 mA of cur-
rent. Populate J4 with a two-​pin header.

To measure MCU current, connect a voltmeter across the two pins of J4. Divide the measured 
voltage drop by 10 to determine MCU current. Do not put an ammeter across J4, as that will give 
an inaccurate reading. The ammeter’s internal shunt resistor will be in parallel with R81, reducing 
the effective resistance, voltage drop, and current reading.

Measuring OpenSDA Debug Circuit Current

To isolate the OpenSDA debug circuit’s current, remove resistor R74 (0 Ω). Populate J3 with a 
two-​pin header. Insert a shorting jumper on J3 in order to use the OpenSDA circuit (e.g. to pro-
gram or debug the target MCU).

To measure the OpenSDA circuit’s current consumption, remove the jumper and connect an 
ammeter across the two pins of J3.

Measuring Voltage Regulator Output Current

To isolate the voltage regulator output current, cut the trace on the back of J20. Populate J20 with 
a two-​pin header. Insert a shorting jumper on J20 when you wish to short out the protection diode 
D12 and eliminate its voltage drop (roughly 300 mV depending on the current).

To measure the output current, remove the jumper and connect an ammeter across the two 
pins of J20.

Power Reduction

The following board modifications and procedures can be used to reduce power consumption.

Disconnecting OpenSDA Debug MCU Power and Reset Line

The OpenSDA debug MCU uses a significant amount of power. To disable it, you must disconnect 
its power and also disconnect it from the target MCU’s reset line.

Disconnect the power to the debug circuit by removing resistor R74 (0 Ω). Populate J3 with a 
two-​pin header. 

•	 Insert a shorting jumper on J3 in order to use the OpenSDA circuit (e.g. to program or debug 
the target MCU). 

•	 Remove the shorting jumper to disable the OpenSDA circuit.

The OpenSDA MCU controls the target MCU’s reset line. If the OpenSDA MCU is not pow-
ered, then it will hold the target MCU’s reset line low and prevent it from running.
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Disconnect the target MCU’s reset line from the debug MCU by cutting the trace shorting J14 
on the back of the PCB. Populate J14 with a two-​pin header. 

•	 Insert a shorting jumper on J14 to use the debugger.
•	 Remove the jumper to allow the target MCU to run without the OpenSDA debug MCU being 

powered.

Disconnecting Voltage Regulator U1

The voltage regulator U1 draws about 8 mA of quiescent current. To avoid this current consump-
tion, power the circuit through P3V3_​BAT or P3V3 with a voltage that will not exceed the 3.6 V 
maximum supply voltage rating of the ICs. Exceeding this level will damage the hardware.

Be sure to cut the shorting trace across jumper J20 (on the bottom of the PCB) to allow diode 
D7 to prevent the P3V3 rail from powering U1 (as described in the section “Disconnecting 
Voltage Regulator U1”).

If applying power through P3V3_​BAT, add diode D7 to the PCB. D7 is not populated, as indi-
cated with DNP (do not populate) on the schematic diagram.

Energy Measurement

Measuring energy consumption involves integrating the instantaneous power consumption over 
the time period of interest. This can be challenging for digital circuits because switching activity 
makes the power consumption vary with a high frequency.

energy (W)
Capability of a system to do work on another system. Measured in Joules (J). Symbol is W (work).

Capacitor-​Based Measurement

A simple way determine the energy use is to power the circuit with a capacitator for a certain amount 
of time. The total energy used during that time (W, measured in Joules) is proportional to the capaci-
tance and the difference between the squares of the capacitor’s starting and ending voltages.

	 W C
V V

=
−1

2
2
2

2

Dividing this energy by the time over which it is used gives the average rate of power consumption 
(P, measured in Watts).

	 P C
V V

t
=

−1
2

2
2

2
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A small ultracapacitor (e.g. 0.1 or 0.33 F, rated for at least 5 V) will provide an adequate amount of 
energy for many low-​power applications based on the FRDM-​KL25Z. Assuming a starting voltage 
of 3.3 V and an ending voltage of 2.0 V, a 0.47 F capacitor will provide 1619 mJ of energy. This 
is enough to supply 161.9 mW for 10 seconds. Note that the larger the voltage difference is, the 
more energy is available.

The following bounds are useful when estimating the time to discharge a capacitor. A constant 
current load I will take t seconds to discharge the capacitor from V1 to V2:

	 t
C
I

V V= −( )1 2

A constant resistance load R will take t seconds to discharge the capacitor from V1 to V2, where 
ln is the natural logarithm

	 t CR
V
V

= − ln 2

1

Implementation

Connect the capacitor to the P3V3 rail and ground, both of which are available on connector 
J9. Be sure to cut the shorting trace across J20 to allow diode D7 to prevent the P3V3 rail from 
powering U1, as described in “Disconnecting Voltage Regulator U1.” If desired, disconnect the 
OpenSDA MCU power and reset line as well.

The capacitor will take some time to charge up to the P3V3 rail voltage. The capacitor’s volt-
age will drop slightly after it is disconnected from the rail as charge is redistributed within the 
capacitor. These times and levels should be investigated because they depend on the capacitor’s 
equivalent series resistance, previous level of charge, and capacitance tolerance.

It is important to measure the initial and final voltages of the capacitor accurately in order to 
calculate energy correctly. The initial voltage (P3V3 rail) will be approximately 3.3 V if J20 is 
shorted (bypassing D7), or significantly less (e.g. 3.1 V) if J20 is not shorted. The final voltage 
is determined by the highest of the minimum operating voltages for the devices of interest. For 
example, the MCU requires 1.71 V to operate, the inertial sensor needs 1.95 V, while the blue 
LED needs over 2.5 V [4]–​[6]. For some applications it will be practical to measure this voltage 
directly using a multimeter, while other applications will require other methods.

Circuit Modification Summary

Table A.1 shows which modifications are needed to perform different measurement operations. 
Table A.2 shows how to use the jumpers and headers for different operations.

Figures A.4 and A.5 show the locations of components used in the modifications and 
measurements.
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Table A.2 Summary of Jumper Settings for Different Operations

Run, 
debug, 
or 
program 
target 
MCU

Run, 
target 
MCU, 
disconnect 
debugger

Measure 
target 
MCU 
current

Measure 
debugger 
current

Measure 
regulator 
output 
current

Disconnect 
regulator 
output

Power 
board 
with 
coin 
cell

J4: Target 
MCU 
power

Open. 
Measure 
voltage 
across J4, 
divide by 
10

J3: Debug 
MCU 
power

Short Open Open. 
Measure 
current 
through J3

J14: Target 
MCU reset

Short Open

J20: 
Regulator 
output 
diode 
bypass

Open. 
Measure 
current 
through J20

Open Open

Table A.1 Summary of Circuit Modifications for Different Operations

Run
target 
MCU, 
disconnect 
debugger

Measure
target 
MCU 
current

Measure 
debugger 
current

Measure 
regulator 
output 
current

Disconnect 
regulator 
output

Power 
board 
with 
coin 
cell

Target MCU 
power

Remove 
R73, add J4

Yes

Debug MCU 
power

Remove 
R74, add J3

Yes Yes

Target MCU 
reset line

Cut J14 
shorting 
trace, add 
J14

Yes

Regulator 
output diode 
bypass

Cut J20 
shorting 
trace, add 
J20

Yes Yes Yes

Coin cell 
components

Add D7, 
BT1

Yes
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J20

D7
R74 R73

J3 J4

J14

Figure A.4  Locations of jumpers, resistors, and diode on the front of PCB for circuit modifications.

J20

J14

Figure A.5  Locations of jumpers, resistors, and diode on the back of PCB for circuit modifications.
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Glossary

Acknowledgment  Device response indicating successful reception of message

Activation record  Temporary storage in memory for function’s preserved registers, arguments, 
local variables, return address, etc. Exists only from function’s start to end.

Aliasing  Distortion of signal resulting from sampling at too low of a frequency

Ammeter  Test device which can measure current value through circuit. Multimeters typically 
have ammeter modes available.

Analog  Able to represent an infinite number of possible values

Analog-​to-​digital converter (ADC)  Circuit which converts an analog value (e.g. voltage) to its 
corresponding digital value

And  Multi-​input binary logic operation with output of one only if all inputs are one, else output 
is zero

Anode  Positive terminal of a polarized component (LED, battery, etc.)

Arithmetic/​logic unit (ALU)  Hardware circuit in CPU which performs a machine instruction’s 
arithmetic and logic operations

Assembler  Software tool which translates assembly language code into machine code

Assembly language  Human-​readable representation of machine code

Asynchronous  Activities which are not synchronized with each other, or a protocol that does 
not send clocking information

Atomic  Indivisible, cannot be interrupted or preempted

Baud rate  Rate at which communication symbols are transmitted. Also called symbol rate.

Big-​endian  Describes byte ordering convention in which the most significant byte is stored first 
in memory

Binary  Base-​two numbering system. Each digit can have one of two values (zero and one).
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Bitwise and  Operation in which output bit is logic and of corresponding input bits. C operators 
are & and &=.

Bitwise one’s complement  Operation in which output bit is inverse (one’s complement) of 
corresponding input bit. C operators are ~ and ~=.

Bitwise or  Operation in which output bit is logic or of corresponding input bits. C operators  
are | and |=.

Blocking  State in which a task is waiting for an event to occur. Also called waiting.

Burst-​mode  Mode in which DMA controller performs all transfers in a burst without sharing bus 
with CPU

Busy-​waiting  Wasteful method of making a program wait for an event or delay. Program executes 
test code repeatedly in a tight loop, not sharing time with other parts of program.

Byte  Value which is eight bits long

Byte-​addressable  Memory in which each address identifies a single byte

Call graph  Diagram showing subroutine calling relationships between functions in a program

Call stack  Stack of activation records/​stack frames of functions which have started executing but 
have not yet completed

Cathode  Negative terminal of a polarized component (LED, battery, etc.)

Central processing unit (CPU)  Hardware circuit that executes a program’s instructions

Clear  To change a bit to zero

Clock gating  Method to disable circuit by blocking clock signal, reducing power consumption

CMSIS-​CORE  Portion of CMSIS that provides C-​language interface to processor core and 
peripherals

Comparator  Circuit that compares two values to determine equality or identify larger value

Compiler  Software tool that translates high-​level source code to assembly language code

Condition code flag  Indicates whether result of instruction is negative (N) or zero (Z), or whether 
instruction resulted in carry (C) or overflow (V)

Control register  Register used to configure operation of hardware in CPU or peripheral
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Cooperative multitasking  Scheduling approach where tasks share CPU by voluntarily yielding it 
to other tasks

Cortex Microcontroller Software Interface Standard (CMSIS)  Definition of hardware/​software 
interfaces and debugging interfaces that simplify the development of systems with Cortex-​M 
processors

Counter  Digital circuit which counts number of input pulses

CPU overhead  Portion of time CPU spends executing code that does not perform useful work for 
the application

Critical section  Section of code that may execute incorrectly if not executed atomically

Cycle-​stealing  Mode in which DMA controller shares bus with CPU, taking turns to transfer data

Data race  Situation where ill-​timed preemption of a code critical section can result in incorrect 
program result

Decimal  Base-​ten numbering system. Each digit can have one of ten values (0 through 9).

Demultiplexer  Electronic selector switch that routes input signal to one of N outputs

Deserialization  Conversion of information from serial to parallel form

Digital  Capable of taking on a limited number of values

Digital-​to-​analog converter (DAC)  Circuit that converts a digital value to its corresponding 
analog value (e.g. voltage)

Direct memory access (DMA)  Type of memory access performed by peripheral hardware without 
program instructions

Directive  In assembly language, an order to control how assembler operates. Does not represent 
an instruction.

DMA controller  Peripheral that performs DMA

DMAMUX  Multiplexer that selects DMA event source

Do not populate (DNP)  Indicates that a PCB component is optional and is not installed

Duty cycle  Fraction of time that a PWM signal is asserted

Endianness  Property that describes the order of bytes in multi-​byte structures stored in memory
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Energy (W)  Capability of a system to do work on another system. Measured in Joules (J). Symbol 
is W (work).

Epilog  Final code in function which restores preserved registers, prepares return values, frees 
activation record and returns control to caller function

Event-​triggering  Approach in which software runs when an event occurs

Exception  Event that causes a program to deviate from normal flow of control. Examples include 
illegal instruction, illegal memory access, and interrupt.

Field  A group of one or more bits defining a data item. A register may hold multiple fields.

Finite state machine (FSM)  A type of state machine with all states and transitions defined

Framing symbol  Symbol used to indicate start or end of message

General-​purpose input/​output port (GPIO port)  Peripheral with digital input and output bits

General-​purpose register  Register located in CPU used for data processing by instructions in 
program

Halfword  Value that is 16 bits (two bytes) long

Handler  Software routine that runs in response to interrupt or exception request

Hexadecimal  Base-​sixteen numbering system. Each digit can have one of sixteen values (0 
through 9, A, B, C, D, E and F). Symbols A through F represent values of ten through fifteen.

Immediate value  Data value that is stored as part of a machine instruction

Infrared (IR)  Electromagnetic energy immediately past the visible portion of the spectrum; also 
called invisible light

Input GPIO port bit  Portion of GPIO port that enables program to read a single-​bit input signal

Instruction  Command for processor to execute. Consists of an operation and zero or more 
operands.

Instruction set architecture (ISA)  Description of instructions, registers, and memory accessing 
modes that a CPU supports

Integrated circuit (IC)  Electronic circuit with components built into a single piece of silicon, 
enabling extreme miniaturization, mass production, and cost reduction

Integrated development environment (IDE)  PC-​based program supporting development activities 
such as code editing, building, downloading, debugging
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Inter-​Integrated circuit bus (I2C)  A type of synchronous serial communication bus with addressing 
and acknowledgments

Interrupt  Event used to trigger specific program activity

Interrupt request (IRQ)  Hardware signal indicating that an interrupt is requested

Interrupt service routine (ISR)  Software routine that runs in response to interrupt request. Also 
called a handler.

Invert  To change a bit to the opposite value. Also called toggle.

Kernel  Scheduler with support for task features such as communication, delays, and synchronization

Label  Symbol in assembly language which represents an address

Least-​significant  Having the smallest place value. The least-significant byte of a two-​byte value 
represents values of 0–​255.

Light-​emitting diode (LED)  Electronic component which emits light. Used for indicators, back-
lighting, and general illumination.

Link register (LR)  ARM CPU register that holds return address for subroutine calls or return 
code for exception handlers

Linker/​Loader  Software tool that combines separate object code modules and links cross-​
references to create single executable program file

Little-​endian  Describes byte ordering convention in which least-​significant byte is stored first 
in memory

Local variable  Variable that is visible and accessible only within its declaring function

Machine language  Code in which each instruction is represented as a numerical value. Processed 
directly by CPU.

Media access control (MAC)  Rules controlling when a node can transmit a message on 
shared media

Microcontroller unit (MCU)  Integrated circuit containing CPU, peripherals, support circuits, 
and often memory

Mnemonic  In assembly language, text abbreviation used to describe operation performed by 
instruction

Modularity  Measure of how program is structured to group related portions and separate 
independent portions
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Most-​significant  Having the greatest place value. The most-significant byte of a two-​byte value 
represents values of 0 to 65,280 which are multiples of 256.

Multimeter  Multi-​function test equipment which can measure electrical values such as voltage, 
current, and resistance

Multiplexer  Electronic selector switch that routes one of N inputs signals to the output. MCU 
pin multiplexer is bidirectional (includes demultiplexer).

Multitasking  Approach in which program consists of multiple tasks with independent control 
flow interleaved over time

Native data type  Primary data type used by ALU and registers; 32-​bit integer for ARM 
Cortex-​M CPUs

Non-​preemptive scheduler  Scheduler that does not allow tasks to preempt each other

Operand  Part of an instruction: parameter used by operation

Operating system  Kernel with support for application-​oriented features such as file systems, net-
working support, etc.

Operation  Part of an instruction: specifies what work to do

Or  Multi-​input binary operation with output of one if any inputs are one, otherwise output is zero

Output GPIO port bit  Portion of GPIO port that enables program to write a single-​bit 
output signal

Parallel  Organization in which multiple items are simultaneously available or active

Pending  Requested but not yet serviced (e.g. interrupt)

Peripheral  Hardware that helps CPU by interfacing or providing special functionality

Polling  Software approach in which program explicitly checks a condition

Pop  Instruction which reads a data item from the top of the stack (last used location) in memory 
and updates the stack pointer

Power (P)  Rate at which a device uses energy. Measured in Watts (W). Symbol is P.

Preemption  Pausing the execution of a task to allow another task to run

Preemptive scheduler  Scheduler which supports task preemption
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Printed circuit board (PCB)  Board which holds electronic components and conductive traces for 
interconnection

Prioritization  Favoring one item over another. For example, running task A before B to reduce 
A’s latency at the expense of B.

Program counter (PC)  CPU register used to specify address of instruction to execute next

Program status register (PSR)  Register holding condition code flags

Programmer’s model  Specifies a CPU’s characteristics, including instructions, data types, regis-
ters, addressing modes, and operating modes

Prolog  Initial code in function which preserves registers and prepares activation record

Pulse-​width modulation (PWM)  Method for encoding information onto a single digital signal 
based on duty cycle

Push  Instruction that writes a data item to the next free stack location in memory and updates 
the stack pointer

Quantization  Process of selecting a discrete digital value to represent an analog value

Real-​time kernel  Kernel designed for real-​time systems

Real-​time operating system (RTOS)  Operating system designed for real-​time systems

Real-​time system  System that must respond to events before specified deadlines

Register  Hardware circuit which can store a data value

Register file  Holds CPU’s general purpose registers

Responsiveness  Measure of how quickly a system responds to an input event

Return address  Address of next instruction to execute after completing a subroutine

Root function  A task’s main software function, which may call other functions as subroutines.

Sampling  Process of converting a continuous-​time signal to a series of discrete-​time samples

Scheduler  Mechanism to control which task runs on a processor at a given time

Sequence diagram  Diagram showing sequence of operations and communications between two 
or more actors (e.g. threads, peripherals)
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Serial  Organization in which items are available or active sequentially, not simultaneously

Serial peripheral interconnect (SPI)  A type of synchronous serial communication bus

Serialization  Conversion of information from parallel to serial form

Set  To change a bit to one

Signed  Numbering system that is able to represent positive and negative values and zero

Spaghetti code  Code which is poorly structured because it entangles unrelated features, compli-
cating development and maintenance.

Stack  Last-​in, first-​out data structure. Data items are removed (popped) in the opposite order 
they were inserted (pushed).

Stack pointer (SP)  Pointer to data item on top of stack (last in, first out)

State machine  State-​based model of system with rules for transitions between states

Status register  Register that indicates the status of hardware in CPU or peripheral

Subroutine  Program function that can be called by another function

Supply voltage  Level of voltage applied to electronic circuit to enable operation. Also called 
VDD or VCC.

Symbol (communication)  A waveform or state transmitted on a communication channel to 
represent one or more bits of information.

Symbol (program)  Text name representing a value (e.g. address, data value) in a program

Synchronous  Activities which are synchronized with each other, or a protocol which sends 
clocking information

SysTick timer  Timer peripheral available in Cortex-​M CPU cores, typically used to generate 
periodic time tick

Task  Function and its subroutines that perform an activity. Each task has its own flow of control.

Task preemption  Scheduling approach where a task is paused to allow a different task to run. 
Eventually the first task resumes execution where it was paused.

Timer/​counter  Peripheral that measures time or counts events
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Timer/​PWM module (TPM)  Timer peripheral in Kinetis KL25Z MCU which can also generate 
PWM signals

Top-​of-​stack  Next item that can be popped from stack

Transfer function  Mathematical equation describing relationship between input and output values

Transistor  Basic electronic component which operates as switch or amplifier

Universal asynchronous receiver/​transmitter (UART)  Peripheral for asynchronous 
communications

Unsigned  Numbering system that is able to represent positive values and zero

Vector  Address of an exception handler

Vector table  Table of vectors used to process different exceptions

Volatile data  Data that can change outside of program’s normal flow of control

Volatile memory  Memory that loses its contents if power is lost

Voltmeter  Test device which can measure voltage value across circuit. Multimeters typically 
have voltmeter modes available.

Waiting  A state in which a task is waiting for an event to occur. Also called blocking.

Watchdog timer (WDT)  Hardware peripheral used to reset out-​of-​control program

Word  Value that is 32 bits (four bytes) long
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statically allocated memory, 142–​43

Acknowledgments, 213
Activation record, 127
Addressing, 213, 238–​39
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Ammeter, 269, 270, 271
Analog, 13, 152
Analog comparator 

concepts, 160, 160f
Kinetis KL25Z, 161–​63, 161–​63f, 162t
voltage transition monitor, example application, 163–​64

Analog interfacing, 20
concepts, 152, 153f
quantization, 152, 153–​54, 153f, 154f
sampling, 152, 155–​56

Analog signals, 13
Analog waveform generator. See waveform generator
Analog-​to-​digital conversion (ADC), 13, 152

concepts, 164
converter architectures, 164–​65, 165f
example applications 

hotplate temperature sensor, 171–​73, 172f
infrared proximity sensor, 174–​77f, 174–​80

inputs, 166, 166f
Kinetis KL25Z, 167, 167f
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conversion clock, 169
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on Freedom Board, 171, 171t
SAR converter, 168
special output processing, 170
triggering, 168–​69
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triggering, 166–​67
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Anemometer, 186, 186f, 200–​2
Anode, 29
Application program status register (APSR), 86
Architecture, 85

instructions, 91–​98
memory, 87–​91
operating behaviors, 97–​98
registers, 85–​87
Thumb instructions, 98

Arithmetic/​logic unit (ALU), 83

ARM Cortex-​M0+ processor, 17–​19, 18f, 20f. See also CPU; 
processor

ARMv6 architecture profile, 85. See also architecture
ARMv6-​M architecture profile, 85. See also architecture
Array elements, 145–​47, 145–​47f

one-​dimensional arrays, 145
two-​dimensional arrays, 145

Assembler, 91, 120, 122–​25
Assembly language, 91, 123–​24
Asynchronous, 99, 212
Asynchronous exceptions and interrupts, 99
Asynchronous serial communications 

communicating with a PC (example), 230–​36
interrupt-​driven communications, 233–​36
polled communications, 232–​33

KL25Z UART peripherals, 228–​29
baud rate generator, 229
other features, 230
status and interrupts, 229–​30

protocol concepts, 227
Atomic object access, 114–​15
Automatically allocated memory, 143–​44

Baud rate, 212, 223, 228, 229, 241
Big-​endian systems, 88, 89, 89f. See also Little-​endian systems
Binary, 31
Bitwise and, 93, 219
Bitwise one’s complement, 93
Bitwise or, 31, 42
Blocking. See waiting
Burst-​mode, 252
Busy-​waiting, 55, 69
Byte, 87–​89

least-​significant, 88
most-​significant, 88, 89
read byte, 244–​46
reading and writing multiple bytes, 246–​47
write byte, 243–​44

Byte-​addressable, 87

C control flow structures 
calling subroutines, 141–​42
conditionals, 134

if/​else statements, 134–​36, 135f
switch statements, 136–​38, 137f

loops 
do while code, 138–​39, 139f
for code, 140–​41, 141f
while code, 139, 140f
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C language fundamentals 
memory types, 128
program and functions, 126–​27
program’s memory requirements, 128–​29
start-​up code, 127

Call graph, 126
Call stack, 127
Cathode, 29
Central processing unit (CPU), 6, 7, 13, 14, 26. See also CPU 

core; CPU overhead
exceptions and interrupts. See exceptions and interrupts
and GPIO peripheral, 40–​41, 40f

Circuit modification summary, 273–​75, 274t, 275f
Clear, 33, 38–​39
Clock gating, 34
Clock signal, 20, 35
CMSIS-​CORE, 30, 32, 32f, 35
Communication interfaces, 20
Comparator, 160, 161–​64, 161–​63f, 162t
Compiler, 122
Concurrency, 13–​14

advanced scheduling, 72–​73
real-​time systems, 76–​77
task preemption, 75–​76, 76f
task prioritization, 74–​75
waiting, 73–​74

concepts of, 52–​53
creating and using tasks, 55–​59, 57f
starter program, 53–​55

improving responsiveness, 59–​60
interrupts and event triggering, 60–​64
reducing task completion times with finite state 

machines, 65–​68
using hardware to save CPU time, 68–​72

overview, 52
Condition code flags, 86, 87, 93
Control flow instructions, 96–​97. See also C control flow 

structures
conditional branch, 95–​96
subroutine, 97

Control register, 30, 87, 157
and C Code, 30

and CMSIS, 30–​31
coding style for accessing bits, 31–​32
reading, modifying, and writing fields in, 32–​33

Cooperative multitasking, 58
Cortex Microcontroller Software Interface Standard 

(CMSIS), 30–​31
Counters, 68, 184, 186. See also Timers
CPSID and CPSIE instructions, 97
CPU. See Central processing unit (CPU)
CPU core 

architecture, 85
instructions, 91–​98
memory, 87–​91
operating behaviors, 97–​98
registers, 85–​87
Thumb instructions, 98

concepts, 82–​84
simplified structure of, 83f

CPU overhead, 52
Critical section, 115
Current measurement, 269–​70

Open SDA debug circuit current, 271
target MCU current, 271
voltage regulator output current, 271

Curve-​fitting, 172
Cycle-​stealing mode, 252, 255

Data movement instructions, 92–​93
Data processing instructions, 93–​94
Data race, 115
Debug microcontroller, 21
Debugger, 125, 126f
Decimal, 31
Deserialization, 211
Development board, 21–​22, 22f
Diagnostics, 16, 16f
Digital, 13, 27–​28
Digital-​to-​analog converter (DAC), 13, 152

concepts, 156–​57
control register, 157, 158f
converter architectures, 157
Kinetis KL25Z, 157–​58
waveform generator, example application, 158–​59, 160f

Direct memory access (DMA), 157
concepts, 251–​52
KL25Z, 252–​53

analog waveform generation (example), 259–​63, 263f
basic DMA configuration and use, 256–​57
bulk data transfer (example), 257–​59
DMA controller, 255–​56
DMA multiplexer and trigger sources, 253–​54, 254f

Direct memory access multiplier (DMAMUX), 253, 254f, 261
Directive, 123–​24
Do not populate (DNP), 268, 272
Duty cycle, 187
Dynamic random access memory (DRAM), 128
Dynamically allocated memory, 144–​45

Electric hot plate, 4f
internal components, 4f
temperature control system, 5–​6, 5f

block diagram of a computer-​controlled hot plate, 8f
and electronics, 6
and embedded computer, 6–​7

Electrically erasable programmable ROM (EEPROM), 128
Electronics, in temperature control system, 6
Embedded system/​computer, 22
Embedded system/​computer (generally), 6–​7

attributes 
concurrency, 13–​14
constraints, 16–​17
diagnostics, 16, 16f
interfacing with inputs and outputs, 13
reliability and fault handling, 15
responsiveness, 14–​15

embedding method, 7–​8
energy constraints, 17
microcontrollers, 6
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parts costs, 17
power constraints, 17
size constraints, 17
software operations 

closed-​loop control, 12
communications and networking, 12
sequencing, 12
signal conditioning and processing, 12

temperature constraints, 17
weight constraints, 17

Endianness, memory, 88–​89
Energy measurement 

capacitor-​based measurement, 272–​73
implementation, 273

Epilog code for functions, 129, 130, 131, 132–​33, 134
Error detection, 213
Event-​triggered approach, 60
Exception handlers, 133–​34
Exceptions and interrupts, 98–​99

exception handling behavior 
entering a handler, 100
exiting a handler, 101, 101f
Handler mode and stack pointers, 99

hardware 
Cortex-​M0+ exception sources, 102, 103t
exception making, 108
exception sources, vectors, and handlers, 102, 103t
KL25Z interrupt sources, 103–​4, 103t
NVIC operation and configuration, 106–​7
overview, 101–​2, 102f
peripheral interrupt configuration, 105–​6
vector table definition and handler names, 104–​5

software for interrupts 
interrupt configuration, 111–​12, 111f
program design, 109–​11
sharing data safely given preemption, 113–​15
writing ISRS in C, 112–​13

Execution program status register (EPSR), 86
External references, C code, 122

Fault handling, 15
Field, 31
Finite state machine (FSM), 65

analysis, 65–​68
program structure, 65–​68

Flash memory, 20
Flash ROM, 128, 129f
Framing symbol, 212
FRDM-​KL25Z 

3-​axis inertial sensor, communicating with, 241–​42
building blocks, 243
read byte, 244–​46
reading and writing multiple bytes, 246–​47
write byte, 243–​44

development board, 18f, 19, 19f
power system architecture, 268, 268f, 269f

power domains, 269
power inputs, 268
voltage regulation, 269

Functions 
activation record creation, 132, 132f
activation record deletion, 133, 133f
body, 129, 131
epilog, 129, 130, 131, 132–​33, 134
exception handlers, 133–​34
prolog, 129, 130, 131–​32, 134
register use conventions, 130

function arguments, 130–​31
function return value, 131

General purpose input/​output (GPIO) 
additional pin configuration options 

high current drive outputs, 46–​47
basic digital input and output circuit, 26f
inside the MCU, 29–​44
outside the MCU, 27–​29
overview, 26
peripheral, 37

assemble the complete program, 39–​41, 40f
data direction register, 37
data in register, 37
data out register, 37
faster access, 39
logic components, 37f
module configuration, 38
module use, 38–​39, 38f

pin configuration options, 45–​47
General-​purpose register, 92, 93, 130, 133

Half-​word, 94, 95, 98
Handlers, 60, 102–​5

exception handler 
reset, 127

exception handlers, 133–​34
exception handling behavior 

entering a handler, 100
existing a handler, 101, 101f
Handler mode and stack pointers, 99

interrupt handler, 164
operating behaviors, Thread and Handler modes, 98

Hexadecimal, 30, 124–​25, 214
High-​level programming languages, 120
Hold circuit, 166
Hotplate temperature sensor, ADC, 171–​73, 172f

If/​else statements, 134–​36, 135f
Immediate value, 92
Infrared proximity sensor, ADC, 174, 174f

circuit description, 174–​75, 175–​77f
control software, 175, 177–​80

Input GPIO port bit, 26, 37
Input/​output path configuration, 33, 33f

clock gating, 34
connecting pin to peripheral module, 34–​36

Instruction set architecture, 85
Instructions, 6, 83, 91–​93, 92t, 123

control flow instructions, 96–​97
data movement instructions, 92–​93
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data processing instructions, 93–​94
execution versus debugging, 98
memory access instructions, 94–​95
miscellaneous instructions, 97
Thumb instructions, 98

Integrated development environment (IDE), 121
Interfacing 

analog interfacing, 20
concepts, 152, 153f
quantization, 152, 153–​54, 153f, 154f
sampling, 152, 155–​56

examples 
driving a 3-​color LED on Freedom board, 41–​43
driving a speaker, 43–​44, 43f
driving the hot plate’s heating element, 45

with inputs and outputs, 13
with switches and LED lights, 28–​29, 28–​29, 28f

Inter-​integrated circuit bus (I2C) 
communicating with the FRDM-​ KL25Z’S 3-​axis inertial 

sensor (example), 241–​42
building blocks, 243
read byte, 244–​46
reading and writing multiple bytes, 246–​47
write byte, 243–​44

KL25Z I2C peripherals, 240
baud rate generator, 241
general control, 240
other features, 241
status and interrupts, 240–​41

message format, 238
device addressing, 238–​39
register addressing, 239

protocol concepts, 236–​38
Interrupt handler, 164
Interrupt program status register (IPSR), 86
Interrupt request (IRQ), 60
Interrupt service routine (ISR), 60–​61, 109–​11, 201–​2

C code, 112–​13
Interrupt status flag register (ISFR), 113
Interrupt system, 60. See also Exceptions and interrupts
Interrupt-​driven communications, 233–​36
Interrupts and event triggering. See also Exceptions and 

interrupts
analysis, 63–​64
program structure, 61–​62, 62f

Invert, 60

Keil µVision (microVision) IDE 
software development. See software development tools

Kernel, 73
Kinetis KL25Z 

analog comparator, 161–​63, 161–​63f, 162t
analog-​to-​digital conversion (ADC), 167–​71
COP watchdog timer, 190, 190–​91f

debugging, 192
hardware configuration, 190–​91, 191f
period length, 192
service routine, 192
tilt sensor (example), 192–​94

DAC, 157–​58, 158f
pin configuration options, 46

Kinetis KL25Z timer/​PWM module (TPM), 194, 195f
input capture mode, 200

anemometer (example), 200–​2
output modes, 202–​6

LED dimming (example), 204–​6, 204f
output compare mode, 202–​3
PWM signal generation, 203–​4, 203f

TPM channels, 199–​200, 199f
TPM core and basic timer mode, 194–​96

analog waveform generation (example), 196–​99, 196f, 
198f, 199f

KL25Z I2C peripherals, 240
baud rate generator, 241
general control, 240
other features, 241
status and interrupts, 240–​41

KL25Z MCU, 19, 20, 21f, 47, 127
KL25Z SPI peripherals, 222–​23

other features, 225
status and interrupts, 223–​24
transmission/​reception activity, 224–​25
transmitter baud rate generator, 223

KL25Z UART peripherals, 228–​29
baud rate generator, 229
other features, 230
status and interrupts, 229–​30

KL25Z128VLK4, 88

Label, 124
Least-​significant byte, 88
Light-​emitting diodes (LEDs), 8–​9, 22, 26f, 28–​29, 28f, 36, 110

dimming, 204–​6, 204f
Link register, 85, 95, 97, 132, 133, 134
Linker/​loader, 125
Linux OS, 17
Liquid crystal display (LCD), 14
Little-​endian systems, 88, 88f. See also Big-​endian systems
Load/​store architecture, 85
Local variable, 68

Machine language, 91
Media access control (MAC), 211, 213
Memory 

data access. See accessing data in memory
endianness, 88–​89
memory map, 87–​88
stack, 89–​91

Memory access instructions 
load/​store instructions, 94–​95
memory addressing, 94
stack instructions, 95

Microcontroller unit (MCU), 6–​7, 13, 14, 26
accessing bits, coding style for, 31–​32
additional pin configuration options, 45–​46

high current drive outputs, 46–​47
pull-​up resistors for inputs, 46

assembling the complete program, 39–​41
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GPIO peripheral, 37–​39
input signals, 27–​28
interfacing examples 

driving a 3-​color LED on Freedom board, 41–​43
driving a speaker, 43–​44, 43f
driving the hot plate’s heating element, 45

interfacing with a switch and LED lights, 28–​29, 28f
I/​O path configuration, 33–​36
output signals, 28
using CMSIS to access hardware registers with C Code, 

30–​31
Microcontrollers, 6, 20, 21f

components within, 82f
flash memory, 20
NXP Kinetis KL25Z family, 20, 21f
peripheral devices, 20
SRAM, 20

MKL25Z4.h, 31, 35
Mnemonic, 91, 92t
Modularity, 52
Most-​significant byte, 88, 89
Multimeter, 269, 270, 273
Multiplexer, 34–​35, 35f, 162t, 166–​68, 171t
Multitasking, 58, 75
MUX control bits, 35–​36, 36t

Native data types, 85
N-​bit resistor ladder, 157
Negative temperature coefficient (NTC), 171–​72, 172f
Nested Vectored Interrupt Controller (NVIC), 19

operation and configuration 
enable, 107
pending, 107
priority, 107

Non-​preemptive scheduler, 63
NOP instructions, 97

Object code disassembling tools, 124–​25
Operand, 83
Operating behaviors 

instruction execution versus debugging, 98
Thread and Handler modes, 98

Operating system (OS), 14, 17, 73
Operation, 83
Optimization, of code, 15
Or operation, 33, 36, 42
Output GPIO port bit, 26

Parallel, 210, 211
Parameters, 126
Pending, 107
Periodic 1 Hz interrupt, 189
Periodic interrupt timer (PIT), 69
Periodic timer tick, 185
Peripherals, 14, 15, 20, 21, 26
Photovoltaic (PV) cell, 17
Pin control register (PCR), 34–​35, 34f, 35f, 46
Pointers, 144
Polled communications, 232–​33

Polling, 60
Popping data, 89, 95
Power, 269, 270
Power constraints, 17
Power reduction 

disconnecting Open SDA debug MCU power and reset 
line, 271–​72

disconnecting voltage regulator U1, 272
Power system architecture, 268, 268f, 269f

power domains, 269
power inputs, 268
voltage regulation, 269

Preemptive scheduler, 75–​76, 113
PRIMASK register, 87, 97
Printed circuit board (PCB), 8–​12, 26, 34

of refrigerator, 9, 11f, 12
of remote-​controlled quadcopter toy, 8–​9, 10f

Prioritization, 74–​75
Processor, 15, 19, 20f. See also CPU

clock signal, 20, 35
Program counter (PC), 83

communicating with, 230–​36
interrupt-​driven communications, 233–​36
polled communications, 232–​33

Program status register (PSR), 86
Program-​counter-​relative addressing mode, 142
Programmer, 125
Programmer's model, 85
Prolog code for functions, 129, 130, 131–​32, 134
Proximity sensor, ADC, 174–​77f, 174–​80
Pull-​up resistors for inputs, 46
Pulse-​width modulation (PWM) mode, 157, 187
Pushing data, 89, 95

Quantization, 152, 153–​54
transfer function, 154

Random access memory (RAM), 128, 129f
Read-​only memory (ROM), 128
Real-​time kernel (RTK), 77
Real-​time operating systems (RTOS), 14, 77
Real-​time scheduling analysis, 76
Real-​time systems, 76–​77
Refrigerator 

embedded computer, 8, 9f
embedded system attributes, 12–​17
hardware, 9, 11f, 12
software operation, 12

Register file, 83, 84
Registers, 83, 84, 85–​87, 86f
Reliability, of embedded system, 15
Remote-​controlled quadcopter toy 

embedded computer, 8, 9f
embedded system attributes, 12–​17
hardware, 8–​9, 10f
software operation, 12

Reset exception handler, 127
Resistors, 29
Responsiveness, 52, 59–​60
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of embedded system, 14–​15
raw processing speed, 14–​15
task scheduling, 15

interrupts and event triggering, 60–​64
reducing task completion times with finite state 

machines, 65–​68
using hardware to save CPU time, 68–​72

Return address, 97
Root function, 55
R-​2R resistor ladder, 157

Sample circuit, 166
Sampling, 152, 155–​56

aliasing, 156
signal’s spectrum, 155–​56, 155–​56f

Schedulable system, 76
Scheduling/​scheduler, 14, 15

advanced, 72–​73
real-​time systems, 76–​77
task preemption, 75–​76, 76f
task prioritization, 74–​75
waiting, 73–​74

non-​preemptive scheduler, 63
preemptive scheduler, 75–​76, 113

Secure Digital flash cards, 14
Sequence diagram, 69, 70f
Serial communications 

concepts, 210–​20
development tools, 213–​15
methods, 211

acknowledgments, 213
addressing, 213
error detection, 213
media access control, 213
message framing, 212
serialization, 211–​12
symbol timing, 212

protocols and peripherals, 220
asynchronous serial communications, 227–​36
inter-​integrated circuit bus (I2C), 236–​47
synchronous serial communications, 221–​27

reasons, 210–​11
software structures, 215

queue implementation, 217–​20
queue use, 220
supporting asynchronous communication, 216–​17, 217f

Serial peripheral interface (SPI), 211, 221
loopback test, 225–​27

Serial wire debug (SWD), 125
Serialization, 211–​12
Set, 32–​33
Signal 

frequency of, 186
period of, 186

Signed extend instruction, 93
SIM_​SCGC5 control register, 30, 31f, 32
Software development tools, 121

debugger, 125, 126f
program build tools, 121, 121f

assembler, 122–​25
compiler, 122
linker/​loader, 125

programmer, 125
Software for interrupts 

interrupt configuration, 111–​12, 111f
program design 

communication, 110
example system design, 110–​11
partitioning, 109–​10

sharing data safely given preemption, 113–​15
writing ISRs in C, 112–​13

Software–​hardware interactions, 69–​72, 70f
Solid-​state relay (SSR), 45, 45f
Spaghetti code, 55, 64
SP-​relative addressing mode, 143
Stack, 89–​91, 90–​91f

activation record on, 144f
Stack pointers, 85, 89–​90, 99
Starter program, concurrency 

analysis, 54–​55
program structure, 53–​54

State machine, 65–​68
Static random access memory (SRAM), 20, 88, 128
Statically allocated memory, 142–​43
Status register, 86, 87, 189f, 191, 193, 196f, 224f, 229f, 230f, 

231f, 240f
Subroutines, 97, 126, 141–​42
Successive approximation register (SAR), 165
Supply voltage (VDD), 27, 27f, 28
Switch statements, 136–​38, 137f
Switches, 26f, 28–​29, 28f, 36
Symbol (program), 124
Symbol timing, 212
Synchronous serial communications 

KL25Z SPI peripherals, 222–​23
other features, 225
status and interrupts, 223–​24
transmission/​reception activity, 224–​25
transmitter baud rate generator, 223

protocol concepts, 221
clock phase and polarity, 222
communication, 221

SPI loopback test (example), 225–​27
System control, reason for, 4
System Integration Module (SIM), 30f
SysTick timer, 188

periodic 1 Hz interrupt (example), 189

Target platform 
development board, 21–​22, 22f
microcontroller, 20, 21f
overview, 17–​19
processor, 19, 20f

Task deadlines, 76
Task preemption, 75–​76, 76f
Task prioritization, 74–​75
Task root function, 55, 56, 57
Tasks, concurrency, 55



Index292

292

analysis, 58–​59, 58–​59f
program structure, 56–​58, 57f

Thermocouple, 5
Thread and Handler modes, 98
Thumb instructions, 98
Tilt sensor, 192–​94
Time and frequency measurement, 186–​87
Timer/​PWM module (TPM). See Kinetis KL25Z timer/​PWM 

module (TPM)
Timers, 68, 184. See also Counters

concepts, 184
peripherals, 20, 21, 188

Kinetis KL25Z COP watchdog timer, 190–​94, 190f, 191f
Kinetis KL25Z timer/​PWM module, 194–​206, 196f, 

198f, 199f
SysTick timer, 188–​90, 188–​89f

timer circuit hardware, 184, 184f
timer uses (examples) 

periodic timer tick, 185
PWM signal generation, 187
time and frequency measurement, 186–​87
watchdog timer, 185

Toolchain, 120–​21
Top-​of-​stack, 90f, 91

Transfer function, 154, 157
Transistor, 28
Triggering, 166–​67

Universal asynchronous receiver transmitter (UART), 227–​30
Unsigned extend instruction, 93
USB drives, 14

Vector, 102–​4
Vector table, 102, 104–​5
Volatile data objects, 113–​14
Volatile memory, 128
Voltage transition monitor, 163–​64
Voltmeter, 269, 270

Waiting, 73–​74
Wakeup Interrupt Controller, 19
Watchdog timer (WDT), 185. See also Kinetis KL25Z COP 

watchdog timer
Waveform generator, 158–​59, 160f, 196–​99, 198f, 199f, 259

analysis, 262–​63, 263f
design, 259–​62

Word, 88, 94–​95
Worst-​case response time, 76
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