NC STATE UNIVERSITY

Class 03 -
/0, Timing and Synchronization (Rough)

A.G. Dean

agdean@ncsu.edu
https://sites.google.com/ncsu.edu/agdean/teaching

mailto:agdean@ncsu.edu
https://sites.google.com/ncsu.edu/agdean/teaching

NC STATE UNIVERSITY

Class 03 — 1/0O, Timing and Synchronization

l. Overview
= |/O Timing Requirements
= Synchronization

II. Understanding the Processing Chain for I/O Activities
IIl. How to Synchronize
V. Basic Timing Analysis

NC STATE UNIVERSITY

Outline

= OVERVIEW = HOW TO SYNCHRONIZE? = BASIC TIMING ANALYSIS
= Timing requirements for 1/0 activities are major driver = All Hardware = Approaches
for embedded system design decisions = Easy: Dedicated signals = Slack time
= May need to synchronize to event or time before doing = Some Software = How late can process start and meet deadline?
the work (Sync and Do) = HW/SW allocation and processing chain. SW polls = Response time
= Scope trigger: detect input rising across threshold hardware (input peripheral) = When will this process finish, considering effects
voltage, then can start sampling data = Hard, since software timing is sloppy, gets even of other processes in system
= Quadrature decoder: detect input A rising, then harder when sharing CPU = Complications from scheduler sharing the CPU among SW
sample input B, increment or decrement count = Timing variation diagram (ramp), sync to processes
= UNDERSTANDING PROCESSING CHAIN FOR 1/O ACTIVITIES stabilize/cut timing variation = Basic: static fixed schedule
= Synchronize with something = Start simple: Not sharing CPU = Dynamic scheduling — different orders possible
= Types = Detect with blocking SW loop polling (busy- = Prioritize SW procs
= Event-Triggered: Detect event waiting) = Static or dynamic?
= Time-Triggered: Await target time = Responsiveness = Timing-based or other?
= Do processing in response = Greedy = Preemption of SW proc
= Timing requirements: = Share CPU with software scheduling method = By interrupt service routines
= Simple deadline: within T, after event/time = Round-Robin Loop/Cyclic Exec. = By other SW processes
= Window deadline: Between Ty, g, and Ty, ¢jocc OF = Detector doesn’t block, but take turns with = Results: timing delays
event/time other code (possibly multiple detectors) = Interference by same, higher-priority SW
= Repeat? * Responsiveness processes
= May have burst or sequence of 1/0 activities, so next * Not so greedy = Blocking
will sync (event or time) to next part or do it = Many other sharing options. Prioritization, = Non-preemptive scheduler
immediately/ASAP preemption ... = by lower-priority SW processes sharing
= Examples inputs: = +Schedule, dispatch. resource with this process
= Quadrature decoder, = HW Event Detection
= UART receive data = Hardware peripheral detects event

= HW/SW allocation and processing chain. SW polls
event detector
= HW Event Detection + Interrupt System
= HW/SW allocation and processing chain
= Handler runs

NC STATE UNIVERSITY

1. Overview, Scope Trigger Example

. Overview

A. Timing requirements for I/0 activities are
major driver for embedded system design

decisions

B. May need to synchronize to event or time \) : /\,_\-,/-
before doing the work (Sync and Do) e o o b s
1. Scope trigger: detect input rising across <&

threshold voltage, then can start sampling / B}@;é(
data \) (v

NC STATE UNIVERSITY
Synchronization: Simple Oscilloscope Example

|] |

= Start with simple one-bit digital signal (do analog later)

= |nput signal

>

Signal Value
(e.g. voltage)
1

= Pulses have irregular start times, changing pulse widths

= Displaying the signal

= QOscilloscope (“scope”) plots signal value (e.g. voltage) vertically
vs. time horizontally

= Horizontal time base determines amount of time (T,,,) Time
represented on scope display

= Display stability depends timing relationship between when
scope starts displaying the signal, and when the signal changes

= “Infinite persistence” accumulates all acquired traces on display
until erase button is pressed

Simple Method: Display Sigha

1

|

Continuously

= Sequence

= Display signal from T
= Display signal from 2*T
= Display signal from 3*T
= Display signal from 4*T
= Display signal from 5*T
= Display signal from 6*T

= etc.

= Display signal fromOto T

NC STATE UNIVERSITY

Horiz

to 2%T o,
to 3*T
to 4*T
to 5*T
to 6*T

to 7*T

Horiz
Horiz Horiz
Horiz Horiz
Horiz Horiz
Horiz Horiz

Horiz Horiz

ﬁ “ = Resulting display is unstable, jumps around

over time.

NC STATE UNIVERSITY

Stabilize Display with Triggering

|

H = Scope does nothing until triggered

= Event from input signal (e.g. 0 to 1 edge)
triggers scope to start displaying signal

= Triggering synchronizes the scope’s start of
data display to input signal event

[—

= Resulting display is much more stable
= Rising edge of signal is stable

= Except for last acquisition, where time
between rising edges < T, ..,

= Falling edge is not stable, because pulse
width varies

NC STATE UNIVERSITY

Quadrature Decoder Example

. Overview

B. May need to synchronize to event or time AJ
before doing the work (Sync and Do) ,7 5

&? \V?h;ov/

C ey

2. Quadrature decoder: detect input Arising,
then sample input B, increment or W V/
decrement count (C C (

- P o T e TR 0 e
ot pes—-

J%\’F“L_JL T~ oo TIO0 ey 8
Z 1

NC STATE UNIVERSITY

Process Chain for I/O Activities

Il. Understanding Process Chain for 1/0
Activities

A. Synchronize with something
a. Event-Triggered: Detect event ’—r/ ' ‘
b. Time-Triggered: Await target time ['

B. Do processinginresponse I—--~

1. Timing requirements:

. it
a. Simple deadline: within Tp after &MB b&i chf (i i—_-_:_‘__“__{‘/
' -

event/time
b. Window deadline: Between Tp. open and x 0 \ : [¢
Tow_ciose Of €vENt/time AUC\ o /Cl\z\?q\v‘ /)}/ﬁ] ; m @\
UV <’ B |
R

NC STATE UNIVERSITY

Sequence of I/O Activities

C. Repeat? -
1. May have burst or sequence of I/0
activities, so next will sync (event or time) to
next part or do itimmediately/ASAP Entry Exit
2. Examples inputs: Point Point

a. Quadrature decoder, ~ | 4,51 (*\ Await Event on A:| ASAP Sample B,
’A(ﬁ&? Derech B Rising Edge update position

k 94\/\,@\@. T;

b. UART receive data

| —\’-— %’}/A(—\’ &) ; }‘Lft)
&)(\5 > _Q_T_l.;ﬂ——'?n;i =21 2%1?‘5’(; Wait All bits received?
1

Y, Bit (8 data, 1 parity, Yes

gbéf {.& o | Await Event | Times | Sample RxD, | 1stop) ASA.p
i on RxD: update

Extract data, parity, stop
bits.Validate parity, stop.

: : . Indicate result (data
)@‘(;(/ Falling Edge bits_received received or error).
PR
> No: Wait 1 Bit Time
WV

NC STATE UNIVERSITY

How to Synchronize?

= All Hardware
= HW sync with signals

= Some Software, Some Hardware
= Don’t share CPU
= Share CPU with software scheduling
= HW event detection
= HW event detection + Interrupt system

[ll.How to Synchronize?

B. Some Software

1. HW/SW allocation and processing chain.
SW polls hardware (input peripheral)

Software

Hardware

Software Process A

// Detector/Synchronizer
while (ADC->Result < V_Threshold)

J

// Handler part of process goes here

NC STATE UNIVERSITY

B. Some Software

2. Hard, since software timing is sloppy, gets
even harder when sharing CPU
a. Timing variation diagram (ramp), sync
to stabilize/cut timing variation

Software Process A

// Handler part of process

X = 0;

for (n=0; n<NS; n++) {
r = ADC->Result; // When does

this instruction first execute?

y = scale(r);
LCD _Plot(x++,y);

}

Execution

>
fd

=

@©

fd

S

o

3]

c

S Process
o0

£ Starts
E

-

>
Process Execution Progress

(e.g. # of instructions executed since process start)

When a specific instruction executes (relative to start of process
execution) depends on
 Past behavior: conditional control flow (ifs, loops, etc.),
interrupts, other software processes, scheduling approach
* Time process started relative to to relevant event (e.g. voltage
crosses trigger level for scope)
Timing uncertainty for an instruction is latest exec. time - earliest
exec. time

B. Some Software

2. Hard, since software timing is sloppy, gets

even harder when sharing CPU
a. Timing variation diagram (ramp), sync
to stabilize/cut timing variation

Software Process A

// Detector/Synchronizer built into process
while (ADC->Result < V_Threshold)
// Handler part of process
X = 0;
for (n=0; n<NS; n++) {
r = ADC->Result; // When does this
instruction first execute?
y = scale(r);
LCD_Plot(x++,y);

Timing Uncertainty

NC STATE UNIVERSITY

Synchronize
to Event

Process
Starts
Execution

Tighter Sync

Process Execution Progress

NC STATE UNIVERSITY

3. Start simple: Not sharing CPU
a. Detect with blocking SW loop polling

—~——— —
——. ——

P \
b. geussr:lé:\v;i\inngess Dt\j ?\\ %(Q IV\\ \ @ N SW
c. Greedy! |
| 5poe | Xnac/Hadle] = A
Are AT ,Ewﬁ
‘ /
\JiEx j

NC STATE UNIVERSITY

4. Share CPU with software scheduling dg?.
method L
a. Round-Robin Loop/Cyclic Exec.

i Detector doesn’t block, but take T{'\ @Ai—‘; = Q&X C& Aﬂ,rw g "0> ,p\ _
A‘A turns with other code (possibly ' ' G’L
D B multiple detectors) . H:Nvé}ﬁ Q ’l
ii. Responsiveness

ii. Not so greedy SR v =< O>
] éz(ﬁ&l[ﬁw@&a l.F(Q‘Qi\’:\S?L%(3?6/

b. Many other sharing options.
Prioritization, preemption ... ‘ 9) lWMC
. ..+Scheduﬁm”\ﬁ ﬁ““ —& | %
| R T

NC STATE UNIVERSITY

C. HW Event Detection 3
1. Hardware peripheral detects event =Y | /3(A
2. HW/SW allocation and processing chain. \41,\ Ol
SW polls event detector 9/»/ __
et
T Sles

T X\f\ i
1. HW/SW allocation and processing chain

b (
2. Handler runs /w , (7&
N

9»/ j L

Hw %Eﬂﬁ& i

D. HW Event Detection + Interrupt System

NC STATE UNIVERSITY

IV. Basic Timing Analysis

= Approaches
= Complications from sharing CPU

-

IV. Basic Timing Analysis {

A. Approaches 1:@
1. Slack time 1
a. How late can process start and meet
deadline?

2. Responsetime
a. When will this process finish,

considering effects of other processes
in system

NC STATE UNIVERSITY

NC STATE UNIVERSITY

B. Complic¢ations from scheduler sharingthe |) e, AR
CPU among SW processes scheduler | el T V\ | B 2
1. Basic: static fixed schedule N W,
———— . . \ 'y \\
2. Dynamic scheduling - different orders A ¢ A D !,/}(k«_ ”fk C 7 -~
possible />\ 9 | v
a. Prioritize SW procs

i. Static or dynamic?
ii. Timing-based or other?
3. Preemption of SW proc {

a. By interrupt service routines . '
b. By other SW processes (:: j

\ —

- - m
4. Results: timing delays — N
\ - Tife rieee
a. Interference by same, higher-priority ﬁé\ X H}ﬁb lask -te !

SW processes S }/
b. Blocking S “Jas

N L hared Restuice
i. Non-preemptive scheduler 'f LGW"P(‘\‘@ (u,cl(ﬂ\ Pe';
ii. by lower-priority SW processes \/ TS]QAGD } (l,xgé u}:.s CN o“(‘? V—h\’/c \

sharing resource with this process
20

	Roadmap
	Slide 1: Class 03 - I/O, Timing and Synchronization (Rough)

	Class 03
	Slide 2: Class 03 – I/O, Timing and Synchronization
	Slide 3: Outline
	Slide 4: 1. Overview, Scope Trigger Example
	Slide 5: Synchronization: Simple Oscilloscope Example
	Slide 6: Simple Method: Display Signal Continuously
	Slide 7: Stabilize Display with Triggering
	Slide 8: Quadrature Decoder Example
	Slide 9: Process Chain for I/O Activities
	Slide 10: Sequence of I/O Activities
	Slide 11: How to Synchronize?
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: IV. Basic Timing Analysis
	Slide 19
	Slide 20

