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Class 03 — 1/0O, Timing and Synchronization

l. Overview
= |/O Timing Requirements
= Synchronization

II.  Understanding the Processing Chain for I/O Activities
IIl. How to Synchronize
V. Basic Timing Analysis
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Outline

=  OVERVIEW =  HOW TO SYNCHRONIZE? =  BASIC TIMING ANALYSIS
=  Timing requirements for 1/0 activities are major driver =  All Hardware =  Approaches
for embedded system design decisions =  Easy: Dedicated signals =  Slack time
=  May need to synchronize to event or time before doing =  Some Software =  How late can process start and meet deadline?
the work (Sync and Do) =  HW/SW allocation and processing chain. SW polls =  Response time
= Scope trigger: detect input rising across threshold hardware (input peripheral) = When will this process finish, considering effects
voltage, then can start sampling data = Hard, since software timing is sloppy, gets even of other processes in system
=  Quadrature decoder: detect input A rising, then harder when sharing CPU =  Complications from scheduler sharing the CPU among SW
sample input B, increment or decrement count =  Timing variation diagram (ramp), sync to processes
= UNDERSTANDING PROCESSING CHAIN FOR 1/O ACTIVITIES stabilize/cut timing variation =  Basic: static fixed schedule
= Synchronize with something =  Start simple: Not sharing CPU =  Dynamic scheduling — different orders possible
=  Types = Detect with blocking SW loop polling (busy- =  Prioritize SW procs
=  Event-Triggered: Detect event waiting) = Static or dynamic?
=  Time-Triggered: Await target time = Responsiveness =  Timing-based or other?
= Do processing in response = Greedy =  Preemption of SW proc
= Timing requirements: = Share CPU with software scheduling method = By interrupt service routines
= Simple deadline: within T, after event/time = Round-Robin Loop/Cyclic Exec. = By other SW processes
= Window deadline: Between Ty, g, and Ty, ¢jocc OF =  Detector doesn’t block, but take turns with = Results: timing delays
event/time other code (possibly multiple detectors) = Interference by same, higher-priority SW
=  Repeat? *  Responsiveness processes
= May have burst or sequence of 1/0 activities, so next *  Not so greedy =  Blocking
will sync (event or time) to next part or do it = Many other sharing options. Prioritization, =  Non-preemptive scheduler
immediately/ASAP preemption ... = by lower-priority SW processes sharing
= Examples inputs: = +Schedule, dispatch. resource with this process
=  Quadrature decoder, =  HW Event Detection
=  UART receive data = Hardware peripheral detects event

=  HW/SW allocation and processing chain. SW polls
event detector
=  HW Event Detection + Interrupt System
=  HW/SW allocation and processing chain
=  Handler runs
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1. Overview, Scope Trigger Example

. Overview

A. Timing requirements for I/0 activities are
major driver for embedded system design

decisions

B. May need to synchronize to event or time \) : /\,_\-,/-
before doing the work (Sync and Do) e o o b s
1. Scope trigger: detect input rising across <&

threshold voltage, then can start sampling / B}@;é(
data \) (v
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Synchronization: Simple Oscilloscope Example

| ] |

= Start with simple one-bit digital signal (do analog later)

= |nput signal

>

Signal Value
(e.g. voltage)
1

= Pulses have irregular start times, changing pulse widths

= Displaying the signal

= QOscilloscope (“scope”) plots signal value (e.g. voltage) vertically
vs. time horizontally

= Horizontal time base determines amount of time (T,,,) Time
represented on scope display

= Display stability depends timing relationship between when
scope starts displaying the signal, and when the signal changes

= “Infinite persistence” accumulates all acquired traces on display
until erase button is pressed



Simple Method: Display Sigha

1

|

Continuously

= Sequence

= Display signal from T
= Display signal from 2*T
= Display signal from 3*T
= Display signal from 4*T
= Display signal from 5*T
= Display signal from 6*T

= etc.

= Display signal fromOto T
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Horiz

to 2%T o,
to 3*T
to 4*T
to 5*T
to 6*T

to 7*T

Horiz
Horiz Horiz
Horiz Horiz
Horiz Horiz
Horiz Horiz

Horiz Horiz

ﬁ “ = Resulting display is unstable, jumps around

over time.
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Stabilize Display with Triggering

|

H = Scope does nothing until triggered

= Event from input signal (e.g. 0 to 1 edge)
triggers scope to start displaying signal

= Triggering synchronizes the scope’s start of
data display to input signal event

[—

= Resulting display is much more stable
= Rising edge of signal is stable

= Except for last acquisition, where time
between rising edges < T, ..,

= Falling edge is not stable, because pulse
width varies
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Quadrature Decoder Example

. Overview

B. May need to synchronize to event or time AJ
before doing the work (Sync and Do) ,7 5

&? \V?h;ov/

C ey

2. Quadrature decoder: detect input Arising,
then sample input B, increment or W V/
decrement count ( C C (

- P o T e TR 0 e
ot pes—-

J%\’F“L_JL T~ oo TIO0 ey 8
Z 1
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Process Chain for I/O Activities

Il. Understanding Process Chain for 1/0
Activities

A. Synchronize with something
a. Event-Triggered: Detect event ’—r/ ' ‘
b. Time-Triggered: Await target time [ '

B. Do processinginresponse I—--~

1. Timing requirements:

. it
a. Simple deadline: within Tp after &MB b&i chf ( i i—_-_:_‘__“__{‘/
' -

event/time
b. Window deadline: Between Tp. open and x 0 \ : [ ¢
Tow_ciose Of €vENt/time AUC\ o /Cl\z\?q\v‘ /)}/ﬁ ] ; m @\
UV <’ B |
R



NC STATE UNIVERSITY

Sequence of I/O Activities

C. Repeat? -
1. May have burst or sequence of I/0
activities, so next will sync (event or time) to
next part or do itimmediately/ASAP Entry Exit
2. Examples inputs: Point Point

a. Quadrature decoder, ~ | 4,51 (*\ Await Event on A:| ASAP Sample B,
’A( ﬁ&? Derech B Rising Edge update position

k 94\/\,@\@. T;

b. UART receive data

| —\’-— %’}/A(—\’ &) ; }‘Lft)
&)(\5 > _Q_T_l.;ﬂ——'?n;i =21 2%1?‘5’(; Wait All bits received?
1

Y, Bit (8 data, 1 parity, Yes

gbéf {.& o | Await Event | Times | Sample RxD, | 1stop) ASA.p
i on RxD: update

Extract data, parity, stop
bits.Validate parity, stop.

: : . Indicate result (data
)@‘(;( / Falling Edge bits_received received or error).
PR
> No: Wait 1 Bit Time
WV
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How to Synchronize?

= All Hardware
= HW sync with signals

= Some Software, Some Hardware
= Don’t share CPU
= Share CPU with software scheduling
= HW event detection
= HW event detection + Interrupt system



[ll.How to Synchronize?

B. Some Software

1. HW/SW allocation and processing chain.
SW polls hardware (input peripheral)

Software

Hardware

Software Process A

// Detector/Synchronizer
while (ADC->Result < V_Threshold)

J

// Handler part of process goes here
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B. Some Software

2. Hard, since software timing is sloppy, gets
even harder when sharing CPU
a. Timing variation diagram (ramp), sync
to stabilize/cut timing variation

Software Process A

// Handler part of process

X = 0;

for (n=0; n<NS; n++) {
r = ADC->Result; // When does

this instruction first execute?

y = scale(r);
LCD _Plot(x++,y);

}

Execution

>
fd

=

@©

fd

S

o

3]

c

S Process
o0

£ Starts
E

-

>
Process Execution Progress

(e.g. # of instructions executed since process start)

When a specific instruction executes (relative to start of process
execution) depends on
 Past behavior: conditional control flow (ifs, loops, etc.),
interrupts, other software processes, scheduling approach
* Time process started relative to to relevant event (e.g. voltage
crosses trigger level for scope)
Timing uncertainty for an instruction is latest exec. time - earliest
exec. time




B. Some Software

2. Hard, since software timing is sloppy, gets

even harder when sharing CPU
a. Timing variation diagram (ramp), sync
to stabilize/cut timing variation

Software Process A

// Detector/Synchronizer built into process
while (ADC->Result < V_Threshold)
// Handler part of process
X = 0;
for (n=0; n<NS; n++) {
r = ADC->Result; // When does this
instruction first execute?
y = scale(r);
LCD_Plot(x++,y);

Timing Uncertainty
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Synchronize
to Event

Process
Starts
Execution

Tighter Sync

Process Execution Progress
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3. Start simple: Not sharing CPU
a. Detect with blocking SW loop polling

—~——— —
——. ——

P \
b. geussr:lé:\v;i\inngess Dt\j ?\\ %(Q IV\\ \ @ N SW
c. Greedy! |
| 5poe | Xnac/Hadle] = A
Are AT ,Ewﬁ
‘ /
\JiEx j
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4. Share CPU with software scheduling dg?.
method L
a. Round-Robin Loop/Cyclic Exec.

i Detector doesn’t block, but take T{'\ @Ai—‘; = Q&X C& Aﬂ,rw g "0> ,p\ _
A‘A turns with other code (possibly ' ' G’L
D B multiple detectors) . H:Nvé}ﬁ Q ’l
ii. Responsiveness

ii. Not so greedy SR v =< O>
] éz(ﬁ&l[ﬁw@&a l.F(Q‘Qi\’:\S?L%( 3?6/

b. Many other sharing options.
Prioritization, preemption ... ‘ 9) lWMC
. ..+Scheduﬁm”\ﬁ ﬁ““ —& | %
| R T
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C. HW Event Detection 3
1. Hardware peripheral detects event =Y | /3( A
2. HW/SW allocation and processing chain. \41,\ Ol
SW polls event detector 9/»/ __
et
T Sles

T X\f\ i
1. HW/SW allocation and processing chain

b (
2. Handler runs /w , (7&
N

9»/ j L

Hw %Eﬂﬁ& i

D. HW Event Detection + Interrupt System
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IV. Basic Timing Analysis

= Approaches
= Complications from sharing CPU



-

IV. Basic Timing Analysis {

A. Approaches 1:@
1. Slack time 1
a. How late can process start and meet
deadline?

2. Responsetime
a. When will this process finish,

considering effects of other processes
in system

NC STATE UNIVERSITY
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B. Complic¢ations from scheduler sharingthe | ) e, AR
CPU among SW processes scheduler | el T V\ | B 2
1. Basic: static fixed schedule N W,
———— . . \ 'y \\
2. Dynamic scheduling - different orders A ¢ A D !,/}( k«_ ”fk C 7 -~
possible />\ 9 | v
a. Prioritize SW procs

i. Static or dynamic?
ii. Timing-based or other?
3. Preemption of SW proc {

a. By interrupt service routines . '
b. By other SW processes (:: j

\ —

- - m
4. Results: timing delays — N
\ - Tife rieee
a. Interference by same, higher-priority ﬁé\ X H}ﬁb lask -te !

SW processes S }/
b. Blocking S “Jas

N L hared Restuice
i. Non-preemptive scheduler 'f LGW"P(‘\‘@ (u,cl( ﬂ\ Pe';
ii. by lower-priority SW processes \/ TS]QAGD } (l,xgé u}:.s CN o“(‘? V—h\’/c \

sharing resource with this process
20
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