
1

Class 03 -
I/O, Timing and Synchronization (Rough)

A.G. Dean
agdean@ncsu.edu

https://sites.google.com/ncsu.edu/agdean/teaching

mailto:agdean@ncsu.edu
https://sites.google.com/ncsu.edu/agdean/teaching

2

I. Overview
▪ I/O Timing Requirements

▪ Synchronization

II. Understanding the Processing Chain for I/O Activities

III. How to Synchronize

IV. Basic Timing Analysis

Class 03 – I/O, Timing and Synchronization

3

▪ OVERVIEW
▪ Timing requirements for I/O activities are major driver

for embedded system design decisions

▪ May need to synchronize to event or time before doing
the work (Sync and Do)

▪ Scope trigger: detect input rising across threshold
voltage, then can start sampling data

▪ Quadrature decoder: detect input A rising, then
sample input B, increment or decrement count

▪ UNDERSTANDING PROCESSING CHAIN FOR I/O ACTIVITIES
▪ Synchronize with something

▪ Types

▪ Event-Triggered: Detect event

▪ Time-Triggered: Await target time

▪ Do processing in response

▪ Timing requirements:

▪ Simple deadline: within TDL after event/time

▪ Window deadline: Between TDL_Open and TDL_Close of
event/time

▪ Repeat?

▪ May have burst or sequence of I/O activities, so next
will sync (event or time) to next part or do it
immediately/ASAP

▪ Examples inputs:

▪ Quadrature decoder,

▪ UART receive data

▪ HOW TO SYNCHRONIZE?
▪ All Hardware

▪ Easy: Dedicated signals

▪ Some Software

▪ HW/SW allocation and processing chain. SW polls
hardware (input peripheral)

▪ Hard, since software timing is sloppy, gets even
harder when sharing CPU

▪ Timing variation diagram (ramp), sync to
stabilize/cut timing variation

▪ Start simple: Not sharing CPU

▪ Detect with blocking SW loop polling (busy-
waiting)

▪ Responsiveness

▪ Greedy

▪ Share CPU with software scheduling method

▪ Round-Robin Loop/Cyclic Exec.

▪ Detector doesn’t block, but take turns with
other code (possibly multiple detectors)

▪ Responsiveness

▪ Not so greedy

▪ Many other sharing options. Prioritization,
preemption …

▪ + Schedule, dispatch.

▪ HW Event Detection

▪ Hardware peripheral detects event

▪ HW/SW allocation and processing chain. SW polls
event detector

▪ HW Event Detection + Interrupt System

▪ HW/SW allocation and processing chain

▪ Handler runs

▪ BASIC TIMING ANALYSIS
▪ Approaches

▪ Slack time

▪ How late can process start and meet deadline?

▪ Response time

▪ When will this process finish, considering effects
of other processes in system

▪ Complications from scheduler sharing the CPU among SW
processes

▪ Basic: static fixed schedule

▪ Dynamic scheduling – different orders possible

▪ Prioritize SW procs

▪ Static or dynamic?

▪ Timing-based or other?

▪ Preemption of SW proc

▪ By interrupt service routines

▪ By other SW processes

▪ Results: timing delays

▪ Interference by same, higher-priority SW
processes

▪ Blocking

▪ Non-preemptive scheduler

▪ by lower-priority SW processes sharing
resource with this process

Outline

4

1. Overview, Scope Trigger Example

5

▪ Input signal

▪ Start with simple one-bit digital signal (do analog later)

▪ Pulses have irregular start times, changing pulse widths

▪ Displaying the signal

▪ Oscilloscope (“scope”) plots signal value (e.g. voltage) vertically
vs. time horizontally

▪ Horizontal time base determines amount of time (THoriz)
represented on scope display

▪ Display stability depends timing relationship between when
scope starts displaying the signal, and when the signal changes

▪ “Infinite persistence” accumulates all acquired traces on display
until erase button is pressed

Synchronization: Simple Oscilloscope Example

Time

Si
gn

al
 V

al
u

e
(e

.g
. v

o
lt

ag
e)

THorizontal

6

▪ Sequence

▪ Display signal from 0 to THoriz

▪ Display signal from THoriz to 2*THoriz

▪ Display signal from 2*THoriz to 3*THoriz

▪ Display signal from 3*THoriz to 4*THoriz

▪ Display signal from 4*THoriz to 5*THoriz

▪ Display signal from 5*THoriz to 6*THoriz

▪ Display signal from 6*THoriz to 7*THoriz

▪ etc.

▪ Resulting display is unstable, jumps around
over time.

Simple Method: Display Signal Continuously

7

▪ Scope does nothing until triggered

▪ Event from input signal (e.g. 0 to 1 edge)
triggers scope to start displaying signal

▪ Triggering synchronizes the scope’s start of
data display to input signal event

▪ Resulting display is much more stable

▪ Rising edge of signal is stable

▪ Except for last acquisition, where time
between rising edges < Thoriz

▪ Falling edge is not stable, because pulse
width varies

Stabilize Display with Triggering

8

Quadrature Decoder Example

9

Process Chain for I/O Activities

after

10

Sequence of I/O Activities

Await Event on A:

Rising Edge

Sample B,

update position

ASAP

Entry
Point

Exit
Point

Sample RxD,

update

bits_received

Wait
1½ Bit
Times

Extract data, parity, stop

bits. Validate parity, stop.

Indicate result (data

received or error).

Await Event

on RxD:

Falling Edge

No: Wait 1 Bit Time

Yes:
ASAP

All bits received?
(8 data, 1 parity,

1 stop)

11

▪ All Hardware
▪ HW sync with signals

▪ Some Software, Some Hardware
▪ Don’t share CPU

▪ Share CPU with software scheduling

▪ HW event detection

▪ HW event detection + Interrupt system

How to Synchronize?

12

Software Process A

// Detector/Synchronizer

while (ADC->Result < V_Threshold)

 ;

// Handler part of process goes here

ADC GPIO LCD

So
ft

w
ar

e
H

ar
d
w

ar
e

VIn

13

Software Process A

…

// Handler part of process

x = 0;

for (n=0; n<NS; n++) {

 r = ADC->Result; // When does

 this instruction first execute?

 y = scale(r);

 LCD_Plot(x++,y);

}

Process Execution Progress
(e.g. # of instructions executed since process start)

Ti
m

in
g

U
nc

er
ta

in
ty

Process
Starts

Execution

• When a specific instruction executes (relative to start of process
execution) depends on
• Past behavior: conditional control flow (ifs, loops, etc.),

interrupts, other software processes, scheduling approach
• Time process started relative to to relevant event (e.g. voltage

crosses trigger level for scope)
• Timing uncertainty for an instruction is latest exec. time – earliest

exec. time

14

Software Process A

…

// Detector/Synchronizer built into process

while (ADC->Result < V_Threshold)

 ;

// Handler part of process

x = 0;

for (n=0; n<NS; n++) {

 r = ADC->Result; // When does this

 instruction first execute?

 y = scale(r);

 LCD_Plot(x++,y);

}

Tighter Sync

Looser Sync

Process Execution Progress

Ti
m

in
g

U
nc

er
ta

in
ty Synchronize

to Event

Process
Starts

Execution

15

16

17

18

▪ Approaches

▪ Complications from sharing CPU

IV. Basic Timing Analysis

19

20

	Roadmap
	Slide 1: Class 03 - I/O, Timing and Synchronization (Rough)

	Class 03
	Slide 2: Class 03 – I/O, Timing and Synchronization
	Slide 3: Outline
	Slide 4: 1. Overview, Scope Trigger Example
	Slide 5: Synchronization: Simple Oscilloscope Example
	Slide 6: Simple Method: Display Signal Continuously
	Slide 7: Stabilize Display with Triggering
	Slide 8: Quadrature Decoder Example
	Slide 9: Process Chain for I/O Activities
	Slide 10: Sequence of I/O Activities
	Slide 11: How to Synchronize?
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: IV. Basic Timing Analysis
	Slide 19
	Slide 20

